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基于 MPSoC 平台的自动驾驶车辆故障运行控制
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摘要：在德国联邦研发项目 UNICARagil 中，开发了一个

ECU，作为UNICARagil新颖的大脑架构的一部分。应用所

谓的脑干部件，通过面向服务的架构，对全自动驾驶车辆进

行安全关键的实时控制。本文介绍了该设备的硬件架构和

基本软件架构，并列举了一些安全措施。重点是MPSoC和

OS配置、ECU的更新过程和启动过程。回退实例系统可以

保护它免受引导加载程序、内核或根文件系统以及开发过程

中和应用现场中的严重错误的影响。最后，列举了设备在车

辆环境中的功能。在众多的科学内容出版物和社交媒体上，

笔者展示了以使用脑干为核心部件的车辆通过试验场的测

试情况。
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Abstract： In the project UNICARagil， an ECU was 
developed that is part of the novel UNICARagil brain 
architecture［1］. The so-called brainstem was dedicated 
for safety-critical real-time control of a fully automated 
vehicle via a service-oriented architecture. This paper 
describes the hardware and basic software architecture of 
the device and points out some of the safety measures. 
The focus is on the MPSoC and OS configuration， the 
update process of the ECU， and the boot process. A 
system of fallback instances protects the ECU against 
critical errors in the bootloader， kernel or root file 
system， as well during the development process as in the 

field. Finally， this paper points out the functionality of the 
device in the vehicle context. In numerous publications in 
science and on social media， it presents the vehicle going 
over the proving ground with the brainstem as a central 
component.

Key words： MPSoC； fail-operational； embedded real-

time system；automotive；UNICARagil；PetaLinux 

The automotive domain today faces great 
challenges of which automated driving， electric drive 
and novel E/E-architectures are just some examples.  
To take a step to the future and unify all these 
technological trends into experimental real-life 
vehicles we started the UNICARagil project.  There 
the Institute of Automotive Engineering （IFS） of the 
University of Stuttgart developed the fail-operational 
real-time ECU “brainstem” which belongs to the 
novel brain-based E/E-architecture of our vehicles ［1］.  
Fig. 1 shows the latest version of the brainstem with 
opened cover.  It presents the two redundant 
instances， the power and communication interfaces 
and the maintenance cable.  

In this paper we will describe its hardware and 
software structure and make a deep dive into the boot 
and update process， as it gives a good insight into the 
technological structure of this system.

1 Hardware architecture 

The UNICARagil brainstem is a fail-operational 
embedded real-time system with two redundant 
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internal instances.  The main application is trajectory 
control［2］ and a safe stop functionality as a fallback 
system in case of an error in the main vehicle control 
system［3-4］.  Fig. 2 shows the hardware structure of 
one brainstem instance based on a Zynq Ultrascale+ 
ZU3EG with a quad-core ARM Cortex A53 
application processing unit （APU） and a dual-core 
ARM Cortex R5 real time processing unit （RPU） 
with lockstep functionality.  A dual 5‒60 V wide input 
power supply guarantees full functionality even in 
cases of extreme power instability.  Both the APU 
and the RPU possess an own Gbit Ethernet interface 
for full access to the whole vehicle network.  The 
brainstem can additionally access peripheral units via 
two CAN interfaces.

2  Software architecture and toolchain

Fig. 3 describes the toolchain that is required for 
Xilinx MPSoC development.  The workflow starts 
with the MPSoC hardware configuration.  The 
system enables flexible pin configuration and 

activation of interfaces like CAN and SPI.  The 
integrated programmable logic （PL） supports the 
implementation of ultra-fast low-level functionality 
like hardware support for communication protocols.  
The Xilinx tool Vivado offers pre-implemented IP-

cores for the PL， e. g.  for integration of a second 
GbE MAC on the chip.

The APU software is based on an embedded 
Linux with PREEMPT_RT kernel.  The command 
line tool “PetaLinux Tools” generates complete 
embedded Linux boot images， containing bootloader， 
kernel， device tree and root file system.  As a next 
software layer the Automotive Service Oriented 
Architecture （ASOA） serves as a middleware for the 
equal communication between all ASOA services in 
the vehicle， independently if they are located on the 
same ECU or not.  The application software on the 
APU， especially the ASOA services， can be 
developed with general purpose code editors like 
Visual Studio Code.  Examples for ASOA services 
on the APU are a vehicle boot and shutdown service， 
a driving corridor monitoring （DCM）， a platform 
sensor adapter （PSA） and the trajectory 
preprocessing （TP） services［3-4］.  Additionally the 
APU hosts basic software like the ASOA 
orchestrator， PTP and system management tools for 
update， boot & shutdown of the brainstem itself.

The RPU is the host for our most safety and 
time critical application： the vehicle trajectory 
control.  It is also the ideal place for a system 
monitoring service.  The applications on the RPU 
are， like all software applications in the UNICARagil 
vehicles， implemented as ASOA services.  The 
corresponding ASOA middleware for the RPU was 

Fig. 1　Brainstem hardware V5.0

Fig.2　Hardware structure of one brainstem instance
Fig.3　Toolchain for brainstem development
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implemented on the FreeRTOS real-time OS［5］.  The 
RPU has its own GbE network interface with PTP 
time synchronization.  For software development on 
the RPU the Xilinx SDK （XSDK） is required.

3 Memory partitioning 

The brainstem has two persistent flash 
memories： a QSPI flash for the boot loader and the 
kernel and an eMMC flash for the root file system.

The QSPI flash has a physical size of 128 MB of 
which 78. 5 MB are used， separated into 6 partitions.  
Tab. 1 shows the partitioning of the QSPI flash 
memory.  The first 3 partitions are dedicated to the 
bootloader， the boot environment and the embedded 
Linux kernel.  Each of those partitions has a 
redundant partition for robustness reasons.  The 
bootloader and the kernel are protected by two 
different redundancy concepts： backup partitioning 
and A/B symmetry.  The Bootloader and its boot 
environment each have one backup partition.  For 
technical reasons the active bootloader always needs 
to be placed in the first partition of the QSPI flash， 
but a backup can be copied from another partition in 
the case of faults.  The Kernel partitions implement 
an A/B symmetry： both partitions are equivalent， 
one of them is active and the other one inactive.  We 
can switch the active partition as described in chapter 
5.  The QSPI flash is exclusively accessible for the 
bootloader， the embedded Linux system operates on 
the eMMC flash memory.

Tab. 2 describes the partitioning of the eMMC 
flash memory.  It has a physical size of 8 GB of which 
we use 7 GB， separated into 3 partitions.  The first 
two partitions are reserved for the root file system， in 
an A/B symmetrical design： This allows the 
developers to update the complete file system in a 
resilient way.

When an update fails due to a structural error in 
the new file system， the bootloader automatically 
switches back to the last one.  The third partition is 
meant for common data like log files［6］.

4 Update mechanism from embedded 
Linux side 

We will now describe the boot and update 
process of the brainstem， because this example points 
out some of the characteristic features of its basic 
software structure.  Fig. 4 shows the update process 
from the embedded Linux side.  For every software 
type on the brainstem the update process is different 
since they intervene at different depths in the system.  
All update processes start with calling the update 
program from the embedded Linux shell.  It 
downloads the new image files either from a local 
download server via SSH or from a remote GIT 
repository.  After the files are on board， the brainstem 
places them in a specific directory， dependent on the 
image type.

The update functionality of the brainstem 
supports a one-step update of the complete root file 
system.  For this purpose it downloads the 
corresponding image file from the server and copies it 
into the inactive partition on the eMMC flash （A or 
B）.  Subsequently the definition of the active and 
inactive root file system partition has to be saved into 
the boot environment.  Finally， after a reboot the 
bootloader loads the new file system in resilient way， 
see chapter 5.

The RPU firmware automatically loads its image 
from the directory /lib/firmware.  So the brainstem 
just has to download the boot image， stop RPU， 
copy the image to the directory and start RPU again.  
In UNICARagil embedded Linux applications such as 
services are managed via git.  We reproduced relevant 
parts of the folder structure such as /usr/bin and /usr/
lib in a repository， so the brainstem can clone its 
content directly to the root directory “/”.  All services 

Tab.1　Partitioning of QSPI flash memory

Bootloader
（（BOOT. BIN））

7 MB
Bootl.  backup
（（BOOT. BIN））

7 MB

Boot environment

256 KB
Boot env.

backup
256 KB

Kernel A
（（image. ub））

32 MB
Kernel B

（（image. ub））
32 MB

Tab.2　Partitioning of eMMC flash memory

Rootfs A

3，3 GB
Rootfs B

3，3 GB
Log partition

400 MB
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have to be stopped during that process.
Our embedded Linux supports package 

management via the DNF tool， which is deeply 
integrated into the automatic update process to 
install， update and delete system packages in a 
defined manner.

The update processes of bootloader and kernel 
represent special cases， as they need access to the 
QSPI flash.  This memory device is not directly 
accessible for embedded Linux - apart from discrete 
variables in the boot environment over the commands 
fw_setenv and fw_printenv.  So first the update 
program places the corresponding images in the 
directory “/boot” in the root file system.  Then it sets 
the corresponding bootloader or kernel update flag in 
boot environment and initializes a reboot.  After the 
system reset the current bootloader performs the final 
installation of the image on the QSPI-Flash， which 
will be described in detail in the next chapter［6］.

5 Resilient update support in boot 
process 

The update of basic software components like 
bootloader， kernel or root file system is a critical 
process， as the installation of faulty images can put 
the whole ECU out of commission and make it hard 
to recover.  So we implemented a resilient update 
support in the boot process of the brainstem， 

described in Fig. 5.  After each boot the bootloader， 
kernel and rootfs are “approved”， i. e.  marked as 
bootable.  If an image has already been booted but 
was not approved， the bootloader assumes a system 
crash， e. g.  kernel panic， and reactivates the last 
working state.  We implemented 3 different update 
strategies for bootloader， kernel and rootfs.

Bootloader： The bootloader copies itself and its 
boot environment to the backup partition， loads the 
new bootloader image from the /boot directory on the 
eMMC flash to the bootloader partition on the QSPI 
flash and performs a reset.  The new bootloader is per 
default marked as not executed and not approved.

Kernel： The bootloader copies the kernel image 
from the /boot directory on the eMMC flash to the 
inactive kernel partition， switches the active 
partition， marks the image as not executed and not 
approved and performs a reset.

Rootfs： As the update of the rootfs is performed 
from the embedded Linux side， the bootloader just 
checks， whether it was approved after the last boot 
process and switches the active partition in case of a 
kernel panic.

As a last step of the bootloader process， the 
bootloader approves itself.  So， if the boot or update 
process crashes， after a reboot the bootloader will 
load its own backup and make the system bootable 
again［6］.

Fig.4　Update process from the embedded Linux side
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6 Test and conclusion 

As the UNICARagil project is still going on we 
continue to develop the brainstem basic software and 
its applications.  The resilient boot and update process 
supports us in our work and enables a fluent and agile 
development process as we can quickly and easily test 
new implementations and recover the last working 
state in case of mistakes.  This allowed us finally to 
test the main functions of the brainstem like trajectory 
control in the real vehicle and prove our concept on 
the test route（see Fig. 6）.

The coming months will be characterized by the 
final commissioning of the four vehicles in the fully 

automated mode.  We will demonstrate it on the test 
route in our final event on May 11， 2023 in Aachen.
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Fig.5　Bootloader process with robust update support

Fig.6　UNICARagil vehicle AUTOtaxi on test route[7]
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