% 50 &5 S1
2022 4 12 H

] f K “F 2 4 CH R B R0
JOURNAL OF TONGJI UNIVERSITY (NATURAL SCIENCE)

Vol. 50 No. S1
Dec. 2022

NEHS: 0253-374X(2022)S1-0151-05

DOI: 10. 11908/j. issn. 0253-374x. 23717

EF MPSoC EEH B3 E R EHNEIZITIES

Dennis NIEDBALLA , Hans~Christian REUSS

IR 27 IR TR B (TIFS) , RIS 70569 , {4 [%)

WE . FEEEPIRT AT H UNICARagl 1, JF & T —4
ECU, /£ UNICARagil #7514 K I 4k 1 — 5653 I FH T
TR A 2 3 o v i A 5 (R AR, 4 1 S e 4 At
119 A B S P il . AR SCA R T % O B2 4 4 A
FEABRAR AN FH 26 T — e it . T A& MPSoC 1
OS Bt '® \ECU MW B FE A shad #2 . LR SE] R S v] LA
PP E Rz s FMEART SR S R G T & 1
RIS, L A ™ AR AR . R AR T SR A
AT IhRE . 1A BIRRE P8 T R At S A L
SRR T LA T R A% O3 1) 2 43 5 55 3 1
RN

KHEIF: MPSoC; MUBHET T ;i ANLRT R 48 ; UNICARagil;
Petal.inux
PESES: U6l XEkPRERE: A

MPSoC-Based Platform for Fail-
Operational Control of an Automated
Research Vehicle

Dennis NIEDBALLA, Hans-Christian REUSS
(Institute of Automotive Engineering (IFS) , University of Stuttgart,
70569 Stuttgart, Germany)

Abstract: In the project UNICARagil, an ECU was
developed that is part of the novel UNICARagil brain
architecture [1]. The so-called brainstem was dedicated
for safety-critical real-time control of a fully automated
vehicle via a service-oriented architecture. This paper
describes the hardware and basic software architecture of
the device and points out some of the safety measures.
The focus is on the MPSoC and OS configuration, the
update process of the ECU, and the boot process. A
system of fallback instances protects the ECU against
critical errors in the bootloader, kernel or root file

system, as well during the development process as in the

ki H1: 2022-08-15
AT H . M8 EDIRHE AR B H (FKZ 16EM00289)

field. Finally, this paper points out the functionality of the
device in the vehicle context. In numerous publications in
science and on social media, it presents the vehicle going
over the proving ground with the brainstem as a central

component.

MPSoC;
time system; automotive; UNICARagil; PetaLinux

Key words: fail-operational; embedded real-

The automotive domain today faces great
challenges of which automated driving, electric drive
and novel E/E-architectures are just some examples.
To take a step to the future and unify all these
technological trends into real-life
vehicles we started the UNICARagil project. There

the Institute of Automotive Engineering (IFS) of the

experimental

University of Stuttgart developed the fail-operational
real-time ECU “brainstem” which belongs to the
novel brain-based E/E-architecture of our vehicles "'
Fig. 1 shows the latest version of the brainstem with
opened cover. It presents the two redundant
instances, the power and communication interfaces
and the maintenance cable.

In this paper we will describe its hardware and
software structure and make a deep dive into the boot
and update process, as it gives a good insight into the

technological structure of this system.

1 Hardware architecture

The UNICARagil brainstem is a fail-operational

embedded real-time system with two redundant

5 —1E# : Dennis Niedballa(1986—) , 5 , TR0t , FBHFF 5 7 A BB SRR AR RS .

E-mail: dennis. niedballa@ifs. uni-stuttgart. de

iHAEEA : Hans-Christian REUSS (1959—), 53, ##%2, TRE2= it FEF5E 07 RGN IRl E AR .

E-mail: hans-christian. reuss@ifs. uni-stuttgart. de

152 6] 5% K 2 2 (A 4K BE 2 B

o5 50 %

Fig. 1 Brainstem hardware V5.0

internal instances. The main application is trajectory
control” and a safe stop functionality as a fallback
system in case of an error in the main vehicle control

system'**',

Fig. 2 shows the hardware structure of
one brainstem instance based on a Zynq Ultrascale+
ZU3EG with a quad-core ARM Cortex A53
application processing unit (APU) and a dual-core
ARM Cortex R5 real time processing unit (RPU)
with lockstep functionality. A dual 5-60 V wide input
power supply guarantees full functionality even in
cases of extreme power instability. Both the APU
and the RPU possess an own Gbit Ethernet interface
for full access to the whole vehicle network. The
brainstem can additionally access peripheral units via

two CAN interfaces.

Brainstem Instance A

Zynq Ultrascale+

Cortex Cortex FPGA
A53 AB3

Cortex Cortex
A53 A53
e

Power | ETH1 | ETH2 | CAN1 | CAN2

Fig.2 Hardware structure of one brainstem instance

2 Software architecture and toolchain

Fig. 3 describes the toolchain that is required for
Xilinx MPSoC development. The workflow starts
The

configuration and

with the MPSoC hardware configuration.

system enables flexible pin

activation of interfaces like CAN and SPI. The
integrated programmable logic (PL) supports the
implementation of ultra-fast low-level functionality
like hardware support for communication protocols.
The Xilinx tool Vivado offers pre-implemented IP-
cores for the PL, e. g. for integration of a second
GbE MAC on the chip.

The APU software is based on an embedded
Linux with PREEMPT _RT kernel. The command
line tool “Petalinux Tools” generates complete
embedded Linux boot images, containing bootloader,
kernel, device tree and root file system. As a next
software layer the Automotive Service Oriented
Architecture (ASOA) serves as a middleware for the
equal communication between all ASOA services in
the vehicle, independently if they are located on the
same ECU or not. The application software on the
APU,
developed with general purpose code editors like
Visual Studio Code. Examples for ASOA services

on the APU are a vehicle boot and shutdown service,

especially the ASOA services, can be

a driving corridor monitoring (DCM) , a platform
(PSA) and the
preprocessing (TP) services™. Additionally the
APU hosts ASOA

orchestrator, PTP and system management tools for

sensor adapter trajectory

software like the

basic

update, boot &. shutdown of the brainstem itself.

ARM
Cortex-A!

53

Fig.3 Toolchain for brainstem development

The RPU is the host for our most safety and

time critical application: the vehicle trajectory

control. It is also the ideal place for a system
monitoring service. The applications on the RPU
are, like all software applications in the UNICARagil
vehicles, The

corresponding ASOA middleware for the RPU was

implemented as ASOA services.

% S1 1

Dennis NIEDBALLA , % . 36T MPSoC -4 1Y [3728 B 42 @ik Bz 4745 153

implemented on the FreeRTOS real-time OS"™. The
RPU has its own GbE network interface with PTP
time synchronization. For software development on
the RPU the Xilinx SDK (XSDK) is required.

3 Memory partitioning

The brainstem has two persistent flash
memories: a QSPI flash for the boot loader and the
kernel and an eMMC flash for the root file system.
The QSPI flash has a physical size of 128 MB of
which 78. 5 MB are used, separated into 6 partitions.
Tab. 1 shows the partitioning of the QSPI flash
memory. The first 3 partitions are dedicated to the
bootloader, the boot environment and the embedded
Linux kernel. FEach of those partitions has a
The

bootloader and the kernel are protected by two

redundant partition for robustness reasons.

different redundancy concepts: backup partitioning
and A/B symmetry. The Bootloader and its boot
environment each have one backup partition. For
technical reasons the active bootloader always needs
to be placed in the first partition of the QSPI flash,
but a backup can be copied from another partition in
the case of faults. The Kernel partitions implement
an A/B symmetry: both partitions are equivalent,
one of them is active and the other one inactive. We
can switch the active partition as described in chapter
5. The QSPI flash is exclusively accessible for the
bootloader, the embedded Linux system operates on
the eMMC flash memory.

Tab.1 Partitioning of QSPI flash memory

Bootloader Boot environment Kernel A
(BOOT. BIN) (image. ub)
7 MB 256 KB 32 MB
Bootl. backup Boot env. Kernel B
(BOOT. BIN) backup (image. ub)
7 MB 256 KB 32 MB

Tab. 2 describes the partitioning of the eMMC
flash memory. It has a physical size of 8 GB of which
we use 7 GB, separated into 3 partitions. The first
two partitions are reserved for the root file system, in
an A/B This

developers to update the complete file system in a

symmetrical design: allows the

resilient way.

When an update fails due to a structural error in
the new file system, the bootloader automatically
switches back to the last one. The third partition is

meant for common data like log files'®'.

Tab.2 Partitioning of eMMC flash memory

Rootfs A
3,3 GB

Rootfs B
3,3 GB

Log partition
400 MB

4 Update mechanism from embedded
Linux side

We will now describe the boot and update
process of the brainstem, because this example points
out some of the characteristic features of its basic
software structure. Fig. 4 shows the update process
from the embedded Linux side. For every software
type on the brainstem the update process is different
since they intervene at different depths in the system.
All update processes start with calling the update
embedded Linux shell. It

downloads the new image files either from a local

program from the

download server via SSH or from a remote GIT
repository. After the files are on board, the brainstem
places them in a specific directory, dependent on the
image type.

The update functionality of the brainstem
supports a one-step update of the complete root file
For this
corresponding image file from the server and copies it
into the inactive partition on the eMMC flash (A or
B). Subsequently the definition of the active and

system. purpose it downloads the

inactive root file system partition has to be saved into
the boot environment. Finally, after a reboot the
bootloader loads the new file system in resilient way,
see chapter 5.

The RPU firmware automatically loads its image
from the directory /lib/firmware. So the brainstem
just has to download the boot image, stop RPU,
copy the image to the directory and start RPU again.
In UNICARagil embedded Linux applications such as
services are managed via git. We reproduced relevant
parts of the folder structure such as /usr/bin and /usr/
lib in a repository, so the brainstem can clone its

content directly to the root directory “/”. All services

154 6 3 2 2 (A 28 B 2%) 5550 %
ugdate _/.'
boatleadar kerne root file systam v applications packages
L J L J L 3 L J L L J
dowenlozd bootl. doran oad karnel dewerlozd rootfs SRy e downioad packages
to fbootf o Shooty tolnactive part. P ¥ to fompfupdats
! J— S— i |
st Booteny 5ot hooteny set bl:u:uten'.' dnwnll}ad irnage download app dir e
bootl_update_flag kern=l_update_flag rifs partition to 17 I:IJ"Flrml.l.l..'.rl:ﬂ' o f
i reshicsol o [slart RPL J slarl services
4

Fig.4 Update process from the embedded Linux side

have to be stopped during that process.
Our embedded

management via the DNF tool,

Linux supports package
which 1s deeply
integrated into the automatic update process to
install, update and delete system packages in a
defined manner.

The update processes of bootloader and kernel
represent special cases, as they need access to the
QSPI flash. This memory device is not directly
accessible for embedded Linux - apart from discrete
variables in the boot environment over the commands
fw_setenv and fw_printenv. So first the update
program places the corresponding images in the
directory “/boot” in the root file system. Then it sets
the corresponding bootloader or kernel update flag in
boot environment and initializes a reboot. After the
system reset the current bootloader performs the final
installation of the image on the QSPI-Flash, which

will be described in detail in the next chapter™

5 Resilient update support in boot
process

The update of basic software components like
bootloader, kernel or root file system is a critical
process, as the installation of faulty images can put
the whole ECU out of commission and make it hard
to recover. So we implemented a resilient update

support in the boot process of the brainstem,

described in Fig. 5. After each boot the bootloader,
kernel and rootfs are “approved” , i. e. marked as
bootable. If an image has already been booted but
was not approved, the bootloader assumes a system

crash, e. g. kemel panic, and reactivates the last

working state. We implemented 3 different update
strategies for bootloader, kernel and rootfs.

Bootloader: The bootloader copies itself and its
boot environment to the backup partition, loads the
new bootloader image from the /boot directory on the
eMMC flash to the bootloader partition on the QSPI
flash and performs a reset. The new bootloader is per
default marked as not executed and not approved.

Kernel: The bootloader copies the kernel image
from the /boot directory on the eMMC flash to the
inactive kernel partition, switches the active
partition, marks the image as not executed and not
approved and performs a reset.

Rootfs: As the update of the rootfs is performed
from the embedded Linux side, the bootloader just
checks, whether it was approved after the last boot
process and switches the active partition in case of a
kernel panic.

As a last step of the bootloader process, the
bootloader approves itself. So, if the boot or update
process crashes, after a reboot the bootloader will
load its own backup and make the system bootable

again”

% S1 1

Dennis NIEDBALLA , 4. 5:F MPSoC & 14 H 3%

5 A R A 158

al

bootenv
first execution

bootenv
already executed h/\ NOT approved o

bootenv
f bootenv. error!

env_first_execution = false]‘
import_vars ™

bootenv approvey L bkt

load bootl + env backup

O

kernel kernel

kernel

kernel panic!

y

kernel approvy L I

4

switch kernel partition

rtfs

first executlon

already executed /\ NOT approved (

rtfs

(rtfs_first_execution = false }~

(k [B 4 fal W first execution /kalready executed /\NOTapproved r
ernel_first_execution = false \/ > >

rtfs error!
switch rtfs partition

rtfs approvy |

kernel update flag set

(o a T
copy kernel to inactive partition
switch kernel partition

bootloader update flag set

" kernel first execution, not appr.

reset
. J

save bootl + env backup
copy bootl. to curr. partition

load kernel
set bootargs
approve bootenv
boot

™
erase bootenv. _’©
reset

Fig.5 Bootloader process with robust update support

6 Test and conclusion

As the UNICARagil project is still going on we
continue to develop the brainstem basic software and
its applications. The resilient boot and update process
supports us in our work and enables a fluent and agile
development process as we can quickly and easily test
new implementations and recover the last working
state in case of mistakes. This allowed us finally to
test the main functions of the brainstem like trajectory
control in the real vehicle and prove our concept on

the test route(see Fig. 6).

Fig.6 UNICARagil vehicle AUTOtaxi on test route'”

The coming months will be characterized by the

final commussioning of the four vehicles in the fully

automated mode. We will demonstrate it on the test
route in our final event on May 11, 2023 in Aachen.
Reference:

[1] KEILHOFF D,

vehicle

et al. UNICARagil—New architectures for

[C]//Proceedings of 19
Internationales Stuttgarter Symposium. Wiesbaden:
Vieweg, 2019.

[2] HOMOLLA T,

inkonsistenten Lokalisierungsdaten in modularen technischen

disruptive concepts

Springer

et al. Verfahren zur Korrektur von
Systemen [C]//13 Workshop Fahrerassistenzsysteme und
Automatisiertes Fahren. Walting: TUbiblio, 2020.

[3] ACKERMANNS, ez al. Modul und verfahren zur absicherung von
solltrajektorien fiir Deutsche
Patentanmeldung Anmeldenummer: 10 2019 125 401.9[S].2019.

[4] ACKERMANN S, WINNER H. Systemarchitektur und

Fahrmanover zum sicheren Anhalten modularer automatisierter

automatisiertes fahren:

Fahrzeuge [C]//13 Workshop Fahrerassistenzsysteme und
Automatisiertes Fahren. Walting: TUbiblio, 2020.

[5] www.unicaragil.de.

[6] MOKHTARIAN A,
software architecture for the UNICARagil project[R]. Aachen:
Universititsbibliothek der RWTH Aachen, 2020.

[7] DECKER E. Optimierung des boot-und shutdownvorgangs in

et al. The dynamic service-oriented

einem steuergerat fiir automatisierte fahrzeuge [D]. Stuttgart:
IF'S, University of Stuttgart, 2021.

