基于偏最小二乘地理元胞模型的城市生长模拟
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P209; TU984

基金项目:

国家自然科学基金资助项目(40771174,40301043)、教育部新世纪优秀人才计划资助项目(NCET-06-0381)、上海市曙光计划项目(07SG24)、教育部博士点基金项目(20070247046)


Modelling Urban Growth Using Geographical Cellular Automata Based on Partial Least Squares Regression
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    提出了一种基于偏最小二乘回归方法的地理元胞(Cellular Automata, CA)模型PLS-CA,并用来模拟城市生长和扩展。CA模型的定义涉及存在严重相关性的众多空间变量,而传统的多准则判别技术(MCE)和主成分分析(PCA)不能够彻底地解决变量相关性问题。利用偏最小二乘回归从空间变量中提取线性无关的主成分,结合地理元胞自动机(CA)和地理信息系统(GIS)建立PLS-CA模型,可以优化城市生长和扩展的模拟。以上海市嘉定区1989-2006年城市生长模拟为例,验证了提出的PLS-CA模型。

    Abstract:

    Based on partial least squares regression, a novel geographical cellular automata model (PLS-CA) is proposed for simulating urban growth and expansion. In definition of CA transition rules, numerous highly correlated independent spatial variables are utilized for obtaining more actual simulation results. Conventional methods, such as multi-criteria evaluation (MCE) and principal component analysis (PCA), have difficult in remove the harmful effects of correlation. Using partial least squares regression (PLS) integrated with Geo-CA and GIS, a new CA model is created for optimizing the simulation of urban growth and expansion. The PLS-CA model has been successfully applied to simulate urban growth of Jiading district, Shanghai from 1989 to 2006. And the simulation results show that the accuracy of PLS-CA is higher than that of conventional CA models.

    参考文献
    相似文献
    引证文献
引用本文

冯永玖,童小华(博士生导师).基于偏最小二乘地理元胞模型的城市生长模拟[J].同济大学学报(自然科学版),2010,38(4):608~612

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2008-12-22
  • 最后修改日期:2010-01-19
  • 录用日期:2009-06-04
  • 在线发布日期: 2010-04-28
  • 出版日期:
文章二维码