一种改进的快速归一化互相关算法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP 391.9

基金项目:

“十一五”国家科技支撑计划(2009BAG11B02)


An Improved Fast Normalized Cross Correlation Algorithm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    根据模板和全局最优子图的特点及其相互关系给出2个判据,对归一化互相关算法进行了改进.首先计算模板自相关值,再利用快速傅里叶变换方法计算互相关矩阵,利用第1个判据大幅缩小可能解的范围,减少匹配时间,然后利用第2个判据生成一个规模更小的候选最优解集合,最后确定全局最优解.实验结果说明,改进的归一化互相关算法能加快匹配速度,且能有效地提高图像匹配的准确率.

    Abstract:

    Some improvements were made for normalized cross correlation based on two criterions according to the characteristics of template and image and the interrelationship between them.The autocorrelation of the template was calculated at first,and the cross correlation between template and image was gained based on fast Fourier transform.Then the first criterion was used to shrink the range of the possible solutions, which could shorten the matching time;and the second criterion was applied to generating a more miniature set,in which the solution with the maximal normalized cross correlation was the global optimal solution.Experiments show that the normalized cross correlation based on the given criteria can speed the computing with an enhanced matching precision.

    参考文献
    相似文献
    引证文献
引用本文

谢维达,周宇恒,寇若岚.一种改进的快速归一化互相关算法[J].同济大学学报(自然科学版),2011,39(8):1233~1237

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-04-26
  • 最后修改日期:2011-04-27
  • 录用日期:2010-10-22
  • 在线发布日期: 2011-08-29
  • 出版日期:
文章二维码