基于归纳式学习法的通勤交通满意度指标研究
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

U 121

基金项目:


Development of Satisfaction Index of Commute Travel Based on Inductive Learning
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    以评价通勤者对交通系统满意度为目的,建立通勤交通满意度指标.以问卷形式采集数据,采用归纳式学习方法,分析通勤者满意度等级与通勤时间之间的相关信息,得到以大于0.5证据权的出行时间区间为代表值的满意度指标.其中,通勤时间区间10~30 min为出行者最满意的通勤时间代表值.此结论从一个角度说明交通出行行为具有“可达性”与“移动性”的双重价值.

    Abstract:

    A satisfaction index of commute travel was produced in order to evaluate the extent to which the commuters were satisfied with transportation system.Based on inductive learning, an analysis of the survey data was made to identify the relationship between commuters’satisfaction and commute time.The final satisfaction index was conducted with travel time intervals of weight of evidence above 0.5 as indicator.Commute time between 10 and 30 minutes is the indicator of most satisfactory commute time, which proves to some extent that travel has both values of “accessibility” and “mobility”.

    参考文献
    相似文献
    引证文献
引用本文

赵明宇,孙立军,TYLER Nick,兰成.基于归纳式学习法的通勤交通满意度指标研究[J].同济大学学报(自然科学版),2011,39(9):1303~1306

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-05-23
  • 最后修改日期:2011-07-27
  • 录用日期:2010-08-24
  • 在线发布日期: 2011-10-10
  • 出版日期:
文章二维码