随机过程的第二类随机谐和函数表达
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

O 211.6

基金项目:

国家“八六三”高技术研究发展计划(10872148、90715033);国家863计划(编号2008AA05Z413)


Stochastic Harmonic Functions of Second Kind for Spectral Representations
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    发展了随机过程的第二类随机谐和函数表达并研究了其性质.证明当随机频率与相位服从独立均匀分布而幅值由频率与目标功率谱密度决定时,随机谐和函数过程的功率谱密度函数精确地等于目标功率谱密度函数.研究第二类随机谐和函数过程的渐进正态性,讨论趋向正态分布的速率,并采用Pearson分布研究1维概率密度函数的性质.研究表明,第二类随机谐和函数同第一类随机谐和函数具有相似的性质,且由于第二类随机谐和函数频率为均匀分布,应用更为方便.以多自由度体系的线性和非线性响应分析为例,验证了随机谐和函数模型的有效性和优越性.

    Abstract:

    The stochastic harmonic function of the second kind is proposed for representations of stochastic processes.It is firstly proved that,as long as the random phase angles and random circular frequencies are independent and uniformly distributed whereas the amplitudes are related to the target power spectral density function in a specified way,the power spectral density of the process represented by the stochastic harmonic function of the second kind is identical to the target power spectral density.Then,it is demonstrated that the process represented by the stochastic harmonic function of the second kind is asymptotically Gaussian.The rate of approaching Gaussian distribution is further studied by obtaining the onedimensional distribution via Pearson distribution.The study reveals the similarities between the stochastic harmonic functions of the first kind and the second kind.However,the application of the stochastic harmonic function of the second kind is more convenient than that of the first kind because the random circular frequencies are uniformly distributed.Finally,linear and nonlinear responses of a multidegreeoffreedom system subjected to random ground motions are analyzed to exemplify the effectiveness and superiorities of the proposed approach.

    参考文献
    相似文献
    引证文献
引用本文

孙伟玲,陈建兵,李杰.随机过程的第二类随机谐和函数表达[J].同济大学学报(自然科学版),2011,39(10):1413~1419

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-07-28
  • 最后修改日期:2011-07-12
  • 录用日期:2011-01-10
  • 在线发布日期: 2011-11-07
  • 出版日期:
文章二维码