基于遥感影像光谱分析的蓝藻水华识别方法
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP 751.1; TP 79

基金项目:

科技部国际科技合作计划项目


Recognition of Cyanobacteria Bloom Based on Spectral Analysis of Remote Sensing Imagery
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用Landsat7 ETM+遥感影像数据,以淀山湖为例,在分析蓝藻和其他典型地物影像光谱曲线及其特征的基础上,构建归一化蓝藻指数(NDI_CB),有效地从浑浊水体中提取蓝藻信息.通过k均值非监督分类结果可以发现,构建的归一化蓝藻指数较传统的归一化差值植被指数(NDVI)和比值植被指数(RVI)更加适用于提取低密度蓝藻空间分布信息.在此基础上,基于遥感影像光谱特征和归一化蓝藻指数,采用了支持向量机的分类识别模型,最终得到淀山湖区域蓝藻的空间分布范围与面积,通过发现在某一特定时间蓝藻分布的规律,为蓝藻预警和治理的生态学分析提供了及时、有效和客观的依据.

    Abstract:

    Based on the analysis of spectral curve and features of cyanobacteria bloom and other typical ground object,the normalized difference cyanobacteria bloom index(NDI_CB)was constructed to distinguish between cyanobacteria bloom and turbid water with the Landsat7 ETM+ image in Lake Dianshan.In this study two other different vegetation indexes,normalized difference vegetation index(NDVI)and ratio vegetation index(RVI),together with NDI_CB,were applied to extracting the cyanobacteria bloom information from the same image via unsupervised classification method(kmeans).The results show that NDI_CB is the best one for lowdensity cyanobacteria bloom extraction.In order to recognize the cyanobacteria bloom better,support vector machine(SVM)classification method was used to classify the image based on spectral features and NDI_CB,and to obtain the spatial distribution and the area of cyanobacteria bloom in Lake Dianshan.Through studying the laws of the cyanobacteria bloom distribution at a particular time,a sound,efficient and objective basis has been achieved for the ecological analysis of the prevention and the treatment of cyanobacteria bloom.

    参考文献
    相似文献
    引证文献
引用本文

林怡,潘琛,陈映鹰,任文伟.基于遥感影像光谱分析的蓝藻水华识别方法[J].同济大学学报(自然科学版),2011,39(8):1247~1252

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2010-12-08
  • 最后修改日期:2011-05-19
  • 录用日期:2011-04-07
  • 在线发布日期: 2011-08-29
  • 出版日期:
文章二维码