TP751
国家自然科学基金项目(40801172)
为了获得更好的合成孔径雷达(SAR)图像滤波效果,提出一种基于Contourlet域隐马尔可夫树(CHMT)模型的SAR图像滤波算法.提出基于粗分类的系数绑定方法,提高了CHMT模型参数的解算速度;综合应用对数变换、循环平移和均值校正等方法,建立了针对SAR图像乘性斑点噪声模型的统一滤波处理框架,并将基于CHMT模型的滤波算法融入该框架之中;通过对SAR影像进行滤波实验,并将该滤波算法与Lee滤波、小波软阈值滤波等方法进行了比较.可视效果和统计指标显示:基于粗分类的系数绑定方法在改善滤波效果的同时,对CHMT模型解算的速度有很大的提高;在统一滤波框架下,基于CHMT方法的滤波效果优于其他的几种滤波方法.
邓磊,李家存,朱佳文,孙萍.基于Contourlet域隐马尔可夫树模型的SAR图像滤波方法[J].同济大学学报(自然科学版),2012,40(4):0629~0634