LiDAR与航空影像的融合分类与精度分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

P231

基金项目:

国家自然科学基金项目(项目编号)


Classification and Accuracy analysis of LiDAR and Aerial Images
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了弥补单一数据源在地物分类时的不足,本文提出将LiDAR数据与航空影像融合进行地物分类的思想,实现基于面向对象和单像元的复杂城区多级地物分类。将真彩色航空影像与LiDAR距离影像融合,采用光谱特征和空间特征将影像分割成若干同质区域;利用多源数据产生的各种信息建立分类规则并实现基于面向对象的地物分类,将植被信息和高差信息与分类结果叠加,实现基于单像元的分类结果纠正,然后再以对象内包含的建筑物直线段数量为条件对分类结果中的建筑物进行三级精化分类。实验表明该方法能够有效地自动分离建筑物、树木、草地和道路,其中建筑物的制图精度和用户精度分别是92.53%和95.79%,整个区域的分类精度为89.62%,该方法在复杂城区可行有效。

    Abstract:

    In order to make up the insufficiency of the single data source in the classification, the paper presents an approach that integrating LiDAR and aerial image, and implements the multistage complex urban ground object classification based on object-oriented and single pixel. Aerial image and LiDAR are merged and split some homogeneous regions as the research object by combining spectrum and spatial characteristics; ground points and non-ground points are separated by filtering LiDAR, and the altitude difference is obtained based on twice return pulse heights, and vegetation data from false-color aerial image, the classification rules are established and the segmentation objects are classified by adopting object-oriented method; and then the mistake objects are defined again based on above information, the second-stage classification based on single pixel is finished; further classification is put up to eliminate the mistake buildings by extracting the line segments of buildings. The result shows that the approach can automatically effectively separate buildings, woodland, grassland and road, the producer-accuracy and user-accuracy is respectively 92.53% and 95.79%, the whole classification accuracy is 89.62%, the study was a successful step in developing classification method for integrating LiDAR and aerial images.

    参考文献
    相似文献
    引证文献
引用本文

谢瑞. LiDAR与航空影像的融合分类与精度分析[J].同济大学学报(自然科学版),2013,41(4):607~613

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2012-03-08
  • 最后修改日期:2012-12-31
  • 录用日期:2012-11-05
  • 在线发布日期: 2013-07-08
  • 出版日期:
文章二维码