风电场风速时间序列的复杂动力学特性分析
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TM 614

基金项目:


Complex Dynamical Analysis of Wind Speed Time Series in Wind Farm
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    利用混沌理论对风电场风速数据进行了相空间重构,首先由CC方法计算出嵌入维数和延迟时间,然后采用GP算法计算出吸引子关联维数,最后用小数据量改进算法得出风速时间序列的最大Lyapunov指数,由计算结果发现风电场风速时间序列具有混沌特性,为利用混沌预测方法进一步提高风速预测精度提供参考.

    Abstract:

    Wind speed data was reconstructed in phasespace based on chaos theory.The embedding dimension and delay time were first calculated via the CC method.The correlative dimension of attractor was then calculated with the GP method.Finally,the largest Lyapunov exponent of wind speed time series was calculated on the basis of the improved small data sets method.The wind speed is found to be of chaotic property,therefore,the chaosbased prediction method is recommanded to further improve the prediction accuracy of wind speed time series in wind farm.

    参考文献
    相似文献
    引证文献
引用本文

王东风,张有玥,韩璞,徐大平.风电场风速时间序列的复杂动力学特性分析[J].同济大学学报(自然科学版),2010,38(12):1828~1831

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期:
  • 出版日期:
文章二维码