基于二次场算法的大地电磁二维有限单元法正演
CSTR:
作者:
作者单位:

中南大学,同济大学 海洋与地球科学学院

中图分类号:

P631.3

基金项目:

国家自然科学基金项目(41304055,41304056,41264004)


Secondary Field Based Two Dimensional Magnetotelluric Numerical Simulation by Finite Element Method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    推导了同时考虑电阻率与磁导率变化的大地电磁二维方程,并应用有限单元法进行数值模拟.为了提高计算精度与效率、简化计算节点生成,采用格林定理处理二次场方程源项,并设计实现了一种基于二叉树结构的收缩网格剖分算法;采用基于最少填入元思想的稀疏矩阵符号分析方法,实现了稀疏线性方程组的LDLT求解.利用二次场算法进行模型试算,结果表明所采用的新计算方法大大减少了计算单元数量,提高了计算精度与效率.

    Abstract:

    The Helmholtz equations for the secondary fields are almost the same as those for the total fields; the main differences are the addition of source terms involving the primary fields and the conductivity (TM mode) or magnetic permeability (TE mode) difference between the abnormal body and the host. In this paper a forward code was proposed using the finite element method, in which not only the conductivity but also the magnetic permeability differences were considered. In order to increase the calculation accuracy and efficiency, some special technologies were adopted. First, Green’s theorem was used to treat the source term of the secondary field equations as the volume integral and boundary integrals at elements. Next, the contraction grid algorithm was designed based on the binary tree structure. The advantage of the mesh was that it greatly reduced the number of nodes with almost the same precision as the uncontracting mesh. Moreover, sparse linear system of equations was solved by using the LDLT method, in order to reduce the calculation time. The sparse matrix symbolic analysis method based on the minimum fill in element were adopted before the LDLT. Finally, the two models were tested. The results showed that the calculation accuracy and efficiency were greatly improved by using the treatment method of secondary filed source term, the domain discrete method and the LDLT.

    参考文献
    [1]Coggon J H. Electromagnetic and electrical modeling by the finite element method[J].Geophysics, 1971, 36(1): 132-135.
    [2]陈乐寿. 有限元法在大地电磁场正演计算中的应用及改进[J]. 地球科学, 1981(02): 241-260.CHEN Le-shou. Improvements on the application of finite element method to the twodimensional forward solution in the magnetotelluric method[J]. Journal of Earth Science,1981(2):241-260.
    [3]Wannamaker P E, Stodt J A, Rijo L. Two-dimensional topographic responses in magnetotelluricmodeled using finite elements[J]. Geophysics,1986,51(11): 2131-2144.
    [4]史明娟, 徐世浙, 刘斌. 大地电磁二次函数插值的有限元法正演模拟[J]. 地球物理学报,1997,40(03): 421-430.SHI Ming-juan, XU Shi-zhe, LIU Bin. Finite element method using quadratic element in MTforward modeling[J]. Chinese Journal Geophysics,1997,40(3):421-430.
    [5]徐世浙,于涛,李予国等. 电导率分块连续变化的二维MT有限元模拟[J]. 高校地质学报, 1995,1(2): 65-73.XU Shi-zhe, YU Tao, LI Yu-guo, et al. The finite element method for modeling 2-D MT fieldon a geoelectrical model with continuous variation of conductivity within each block [J].Geological Journal of Universities, 1995,1(02):66-73.
    [6]刘云, 王绪本. 大地电磁二维自适应地形有限元正演模拟[J]. 地震地质, 2010,32(03):382-391.LIU Yun, Wang Xu-ban. FEM using adaptive topography in 2D MT forward Modeling[J].Seismology and Geology,32(03): 382-391.
    [7]陈小斌, 张翔, 胡文宝. 有限元直接迭代算法在MT二维正演计算中的应用. 石油地球物理勘探, 2000,35(04): 487-496.CHEN Xiao-bin, ZHANG Xiang, HU Wen-bao. Application for direct iterative algorithm in MT 2D forward computation[J]. Oil Geophysical Prospecting, 2000, 35(4): 487-496.
    [8]马为, 陈小斌,赵国泽. 大地电磁测深二维正演中辅助场的新算法[J]. 地震地质,2008,30(02): 525-533.MA Wei, CHEN Xiao-bin, ZHAO Guo-ze. A new algorithm for the calculation of auxiliaryfield in MT 2D forward modeling[J]. Seismology and Geology, 2008, 30(2): 525-533.
    [9]Key K, Weiss C. Adaptive finite-element modeling using unstructured grids: The 2Dmagnetotelluric example[J]. Geophysics, 2006. 71(6): p. G291-G299.
    [10]Li Y, Pek J. Adaptive finite element modelling of two-dimensional magnetotelluric fields ingeneral anisotropic media[J]. Geophysical Journal International, 2008,175: 942-954.
    [11]柳建新,蒋鹏飞,童孝忠等. 不完全LU分解预处理的BICGSTAB算法在大地电磁二维正演模拟中的应用[J]. 中南大学学报(自然科学版), 2009,40(02): 484-491.LIU Jian-Xin, JIANG Peng-fei, TONG Xiao-zhong et al. Application of BICGSTABalgorithm with incomplete LU decomposition preconditioning to two-dimensionalMagnetotelluric forward modeling[J]. Journal of Central South University(Science andTechnology), 2009,40(02): 484-491.
    [12]张继锋,汤井田,王烨等. 基于预处理共轭梯度的大地电磁快速正演[J]. 中南大学学报(自然科学版), 2010,41(05): 1877-1882.ZHANG Ju-feng, Tong Jin-tian, Wang Ye, et al. Magnetotellurics fast forward based onpreconditioning conjugate gradient[J]. Journal of Central South University(Science andTechnology), 2010,41(05): 1877-1882.
    [13]Wannamaker P E, Stodt J A, Rijo L. A stable finite element solution for two-dimensionalmagnetotelluric modelling[J]. Geophysical Journal Research, 1987, 88(01): 277-296.
    [14]刘小军, 王家林, 于鹏. 基于二次场的二维大地电磁有限元法数值模拟[J]. 同济大学学报(自然科学版), 2007,35(08): 1113-1117.LIU Xiao-jun, WANG Jia-lin, YU Peng. Secondary field based on two dimensionalmagnetotelluric numerical modeling by finite element method[J]. Journal of TongjiUniversity, 2007,35(8): 1113-1117.
    [15]张志勇,刘庆成. 基于收缩二叉树结构网格剖分的大地电磁二维有限单元法正演研究.石油地球物理勘探, 2013,48(03): 482-487.ZHANG Zhi-yong, Liu Qing-cheng. 2D MT numerical simulation using FEM base on bi-treegrid[J]. Oil Geophysical Prospecting, 2013,48(03): 482-487.
    [16]徐世浙. 地球物理中的有限单元法[M]. 北京:科学出版社, 1994:229-247.XU Shi-zhe. FEM in Geophysics[M]. Beijing: Science Press, 1994:229-247.
    [17]Liu J. The Role of Elimination Trees in Sparse Factorization[J]. SIAM Journal on Matrix Analysis and Applications, 1990, 11(1): 134-172.
    [18]Davis T A. Direct methods for sparse linear systems[M]. SIAM, 2006:99-133.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张志勇,李曼,邓居智,杨海燕.基于二次场算法的大地电磁二维有限单元法正演[J].同济大学学报(自然科学版),2015,43(8):1259~1265

复制
分享
文章指标
  • 点击次数:1639
  • 下载次数: 1017
  • HTML阅读次数: 51
  • 引用次数: 0
历史
  • 收稿日期:2014-05-29
  • 最后修改日期:2015-05-04
  • 录用日期:2015-03-30
  • 在线发布日期: 2015-08-07
文章二维码