城市快速路驶入匝道瓶颈车辆汇入行为
作者:
作者单位:

道路与交通工程教育部重点实验室,道路与交通工程教育部重点实验室,道路与交通工程教育部重点实验室

作者简介:

通讯作者:

中图分类号:

U491

基金项目:

国家自然科学基金项目(51278362,51422812)


Modeling the Vehicle Merging Behaviors at Urban Expressway On ramp Bottlenecks
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    基于上海延安高架两个驶入匝道(南线虹许路驶入匝道、虹井路驶入匝道)瓶颈的汇入行为视频,对汇入车辆、当前和目标车道汇入交互车辆进行了轨迹和汇入行为参数提取,共获得416个汇入行为样本;应用分类回归树(CART)对3种汇入行为分别进行建模,分析影响不同汇入行为的因素,并用混淆矩阵对分类结果进行评价.结果表明,CART能较好地预测3种不同汇入类型,其分类准确率均达到了75%以上.CART与经典离散选择模型和朴素贝叶斯分类结果对比表明,CART的分类效果明显优于上述两类模型.

    Abstract:

    Based on the videos of traffic flow at two bottlenecks (Hongxu on ramp and Hongjing on ramp) on Yan’an Expressway in Shanghai, 416 empirical merging behavior samples were collected by extracting trajectories from merging vehicles, as well as each adjacent vehicles. The classification and regression tree (CART) was adopted for modeling three merging situations, the key parameters affecting different merging behaviors were analyzed and the confusion matrix was used to evaluate the result of the classification accuracy. The results show that CART performed well with these data. All the accuracies are over 75%. Moreover, a comparison among CART, classical discrete choice model and naive Bayes classifier was conducted, and the CART shows the best classification results.

    参考文献
    相似文献
    引证文献
引用本文

孙剑,蒋舜,欧阳吉祥.城市快速路驶入匝道瓶颈车辆汇入行为[J].同济大学学报(自然科学版),2015,43(4):0549~

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-06-11
  • 最后修改日期:2014-12-30
  • 录用日期:2014-11-10
  • 在线发布日期: 2015-04-20
  • 出版日期:
文章二维码