圆角化3∶1二维矩形柱体风压分布的雷诺数效应
CSTR:
作者:
作者单位:

同济大学土木工程防灾国家重点实验室,同济大学土木工程防灾国家重点实验室,同济大学土木工程防灾国家重点实验室

中图分类号:

TU317.1

基金项目:

国家自然科学基金重大研究计划重点项目(90715040,91215302)


Reynolds Number Effects on Wind Pressure Distributions of 3∶1 Rectangular Prisms with Various Rounded Corners
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在低紊流度的均匀场中,研究了4种圆角率(0, 5%, 10%和15%)的3∶1二维矩形柱体模型的风压分布随雷诺数的变化规律.从模型周围气流绕流的角度解释了圆角处理的矩形柱体模型的雷诺数效应的机理,并分析了雷诺数对各模型的背风面中点的风压系数的影响.试验雷诺数的变化范围为1.1×105~6.8×105.结果表明,四种圆角率模型的风压分布都受雷诺数的影响,但圆角率为0和5%的模型受雷诺数影响较小,圆角率为10%和15%的模型受雷诺数影响明显.圆角处理措施对矩形柱体模型雷诺数效应的影响主要是通过影响分离剪切层在模型侧面前缘的形成及其在侧面后部区域的再附,进而影响模型的气动特性,使模型更易受雷诺数的影响.

    Abstract:

    Experiments were conducted of measuring wind pressures on the surface of 3∶1 rectangular prisms with rounded corner ratio of 0, 5%, 10% and 15% in low turbulence uniform flow for the testing Reynolds number ranging from 1.1×105 to 6.8×105. The Reynolds number effects on wind pressure distributions were studied, and the mechanisms of Reynolds number effects were revealed by analyzing the variations of the flow around the model. The results show that wind pressure distributions of four models are all affected by the Reynolds number. Compared with the models with 0 and 5%, the wind pressure distributions of models with 10% and 15% are more sensitive to the Reynolds number. The corner rounding modification influences the Reynolds number effects of 3∶1 rectangular prisms by affecting the formation of the separated shear layer, which also affects the flow reattachment of the boundary layer as well as the aerodynamics of the body.

    参考文献
    [1] 顾明,张正维,全涌. 降低超高层建筑横风向响应的气动措施研究进展[J]. 同济大学学报,2013,41(3): 317-323GU Ming,ZHANG Zhengwei,QUAN Yong. Aerodynamic measures for mitigation of across-wind responses of super tall buildings: state of the art [J]. Journal of Tongji University: Natural Science Edition, 2013, 41( 3):317-323.( in Chinese)
    [2] Irwin P A. Bluff body aerodynamics in wind engineering[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6): 701-712.
    [3] Gu M, Quan Y. Across-wind loads of typical tall buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2004, 92(13): 1147-1165.
    [4] Xie J M. Aerodynamic optimization of super-tall buildings and its effectiveness assessment [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2014, 130: 88-98.
    [5] Cooper K R, Nakayama M, Sasaki Y, et al. Unsteady aerodynamic force measurements on a super-tall building with a tapered cross section[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1997, 72:199-212.
    [6] 谢壮宁,李佳. 强风作用下楔形外形超高层建筑横风效应试验研究[J]. 建筑结构学报,2011,32(12):118-126.Xie Zhuangning,Li Jia. Experimental research on cross wind effect on tapered super-tall buildings under action of strong wind[J]. Journal of Building Structures,2011,32 (12):118-126(in Chinese)
    [7] Tamura T, Miyagi T. The effect of turbulence on aerodynamic forces on a square cylinder with various corner shapes [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83(1): 135-145.
    [8] Tamura T, Miyagi T, Kitagishi T. Numerical prediction of unsteady pressures on a square cylinder with various corner shapes [J]. Journal of Wind Engineering and Industrial Aerodynamics, 1998, 74: 531-542.
    [9] Wang J M, Cheng C M, Tens P T. Design wind loads on tall buildings: a wind tunnel data based expert system approach[C]// Proceedings of 11th International Coference on Wind Engineering. Lubbock: International Association for Wind Engineering (IAWE), 2003:531-538.
    [10] Larose G L, D’Auteuil A. On the Reynolds number sensitivity of the aerodynamics of bluff bodies with sharp edges[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(5): 365.
    [11] Larose G L, D’Auteuil A. Experiments on 2D rectangular prisms at high Reynolds numbers in a pressurised wind tunnel[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(6): 923.
    [12] Delany N K, Sorensen N E. Low-speed drag of cylinders of various shapes[R]. Washington, DC: National Advisory Committee for Aeronautics, 1953.
    [13] Robertson J M, Cermak J E, Nayak S K. A Reynolds-number effect in flow past prismatic bodies[J]. Mechanics Research Communications, 1975, 2(5): 279.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王新荣,顾明.圆角化3∶1二维矩形柱体风压分布的雷诺数效应[J].同济大学学报(自然科学版),2015,43(6):0825~0829

复制
分享
文章指标
  • 点击次数:1421
  • 下载次数: 1181
  • HTML阅读次数: 40
  • 引用次数: 0
历史
  • 收稿日期:2014-06-19
  • 最后修改日期:2015-03-03
  • 录用日期:2014-12-01
  • 在线发布日期: 2015-06-10
文章二维码