引入补偿刚度的流体力学标准伽辽金有限元研究
CSTR:
作者:
作者单位:

浙江大学,浙江大学,同济大学

中图分类号:

O35

基金项目:

国家自然科学基金项目(51278461),浙江省重点科技创新团队(2010R50034)


Standard Galerkin Finite Element Method Considering Compensation Stiffness in Fluid Mechanics
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [14]
  • |
  • 相似文献
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    对一维定常对流扩散方程有限元解的波动问题进行了研究,指出提高单元间形函数一阶导数的连续性是改善有限元解数值波动的有效方法.在标准伽辽金有限元基础上引入考虑补偿刚度的补偿项,即在单元与单元之间的节点上增加一个“不平衡力”,形成补偿标准伽辽金有限元格式.针对线性拉格朗日插值和指数型插值分别探讨补偿项中补偿刚度表达式,并对比了补偿有限元解与解析解结果.研究表明,引入补偿项后能提高单元间形函数的连续性,从而明显改善一维对流扩散方程的数值波动.与标准线性拉格朗日插值相比,补偿指数型插值不仅在单元内可精确给出变量的分布,而且单元之间的连续性更好,因而能更好地控制数值波动现象,取得问题较好的数值解.

    Abstract:

    The wave problems of the finite element solution of one dimensional steady state convection diffusion equation was analyzed. It is indicated that the continuity improvement of the shape function between elements is an effective method to decrease the amplitude of wave. Based on the standard Galerkin (SG) finite element method, the compensation term considering the elastic stiffness was introduced by adding an “unbalanced force” to the nodes between elements, to form a complemental standard Galerkin (CSG) finite element equation. The expressions of compensation stiffness of linear Lagrange based interpolation (LLBI) function and exponential function based interpolation (EFBI) function were discussed. The results obtained by CSG and SG were compared with those of the analytical solution. It shows that the continuity of the shape function is improved and the amplitude of wave is decreased when the compensation term is introduced into the SG finite element. Compared with the SG finite element using LLBI, the CSG finite element using EFBI is more effective to control the wave phenomenon since it has a better continuity both inside the element and between two elements.

    参考文献
    [1] Zienkiewicz O.C. Taylor R. L., The Finite ElementMethod for Fluid Dynamics (5th edn)[M], Elsevier: Amsterdam, 2000:79-105.
    [2] Ted Belytschko, Wing Kam Liu Brian Moran. Nonlinear Finite Elements for Continua and Structures[M]. NY, John Wiley Sons Ltd., 2000
    [3] Bathe K. J., Finite Element Procedures[M], Prentice hall, 1996:1-25.
    [4] Bathe K. J. Hou Zhang, A flow-condition-based interpolation finite element procedure for incompressible fluid flows[J], Computers and Structures, 2002, Vol.80: 1267-1277.
    [5] Kohno H, Bathe K J. A nine-node quadrilateral FCBI element for incompressible fluid flows[J]. Communications in numerical methods in engineering, 2006, 22(8): 917-931.
    [6] Zienkiewicz O. C. Wu J., A general explicit or semi-explicit algorithm for compressible and incompressible flows[J], International Journal for Numerical Methods in Engineering, 1992, Vol.35: 457-479.
    [7] Nithiarasu P., Codina R. Zienkiewicz O. C., The Characteristic-Based Split (CBS) scheme—a unified approach to fluid dynamics[J]. Numerical Methods in Engineering, 2006, Vol.66: 1514-1546.
    [8] Hughes T J R, Brooks A. A theoretical framework for Petrov-Galerkin methods with discontinuous weighting functions: Application to the streamline-upwind procedure[J]. Finite elements in fluids, 1982, 4: 47-65.
    [9] Burman E, Smith G. Analysis of the space semi-discretized SUPG method for transient convection–diffusion equations[J]. Mathematical Models and Methods in Applied Sciences, 2011, 21(10): 2049-2068.
    [10] Takase S, Kashiyama K, Tanaka S, et al. Space–time SUPG finite element computation of shallow-water flows with moving shorelines[J]. Computational Mechanics, 2011, 48(3): 293-306.
    [11] 章本照. 流体力学中的有限元方法[M]. 机械工业出版社, 1986年10月第1版:116-181.Zhang Benzhao. The finite element method in fluid mechanics[M], Mechanical Industry Press, the first edition in October 1986:116-181. (in Chinese)
    [12] 刘希云, 赵润祥. 流体力学中的有限元与边界元方法[M]. 上海交通大学出版, 1993:140-288.Liu Xiyun, Zhao Runxiang. Finite element and boundary element methods in fluid mechanics[M]. Shanghai Jiaotong University Press,1993:140-288..(in Chinese)
    [13] 杨曜根. 流体力学有限元[M]. 哈尔滨工程大学出版社, 1995:112-200.Yang Yaogen, Fluid dynamics finite element[M]. Harbin Engineering University Press, 1995:112-200.(in Chinese)
    [14] 方少文,袁行飞,钱若军,韩向科. 采用不同插值函数的流体力学有限元数值波动研究[J]. 工程力学, 2013, 30(11): 266-271.FANG Shao-wen, YUAN Xing-fei, QIAN Ruo-jun, HAN Xiang-ke. Numerical wave of finite element solution in fluid mechanics using different interpolation function[J].Engineering Mechanics, 2013,30(11):266-271.
    相似文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

袁行飞,方少文,钱若军.引入补偿刚度的流体力学标准伽辽金有限元研究[J].同济大学学报(自然科学版),2015,43(8):1174~1179

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-06-27
  • 最后修改日期:2015-05-13
  • 录用日期:2015-04-01
  • 在线发布日期: 2015-08-07
文章二维码