锂离子动力电池内阻模型与实验研究
CSTR:
作者:
作者单位:

同济大学汽车学院,同济大学汽车学院,上海汽车集团股份有限公司技术中心,同济大学汽车学院,同济大学汽车学院,同济大学,东风汽车有限公司东风日产乘用车公司

中图分类号:

TP1

基金项目:

国家自然科学基金项目(NSFC,51207111);国家“九七三”重点基础研究发展计划(2011CB711203)


Lithium ion Power Battery Internal Resistance Model and Its Experiment Study
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [27]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    首先,根据多孔电极理论,建立了锂离子动力电池的仿真模型.对仿真模型的分析可知,影响电池内阻的内部因素为锂离子在电极活性材料中的固相扩散系数及由极片的电子电导率、电解液的离子电导率和活性材料的电子电导率组成的电池总电导率.分别设计制作磷酸铁锂和石墨半电池,使用恒电流间歇滴定法(GITT)对半电池进行固相扩散系数的测量.使用交流阻抗法(EIS)对半电池进行总电导率的测量.对比半电池实验数据和磷酸铁锂锂离子动力电池实验数据可知,电池的极化内阻由锂离子在电极活性材料中的固相扩散系数决定;电池的欧姆内阻由电池的总电导率决定.

    Abstract:

    According to the porous electrode theory, a simulation model of lithium ion power batteries is established. The preliminary analysis of the model indicates that the internal factors which affect the battery internal resistance is the solid phase diffusion coefficient of the electrodes and electronic conductivity, ion conductivity and electrodes conductivity of the battery. The Galvanostatic Intermittent Titration Technique (GITT) is applied to a lithium iron phosphate half cell and a graphite half cell for solid phase diffusion coefficient measurement. The Electrochemical Impedance Spectroscopy(EIS) is applied to a lithium iron phosphate half cell and a graphite half cell for electrical conductivity measurement. The polarization resistance of the battery depends on the lithium ion diffusion coefficient in the anode materials. And the ohmic resistance of the battery depends on the electrical conductivity of the battery.

    参考文献
    [1] 魏学哲, 徐玮, 沈丹. 锂离子电池内阻辨识及其在寿命估计中的应用[J]. 电源技术, 2009,33(03):217-220.
    [2] 郭宏榆, 姜久春, 王吉松, 等. 功率型锂离子动力电池的内阻特性[J]. 北京交通大学学报, 2011,35(05):119-123.
    [3] 徐晓东, 刘洪文, 杨权. 锂离子电池内阻测试方法研究[J]. 中国测试, 2010,36(06):24-26.
    [4] 王宏志, 武俊峰. 基于LabVIEW的锂离子动力电池内阻测试系统[J]. 自动化技术与应用, 2009,28(04):80-82.
    [5] Churikov A V, Volgin M A, Pridatko K I. On the determination of kinetic characteristics of lithium intercalation into carbon[J]. Electrochimica Acta, 2002,47(17):2857-2865.
    [6] Dao T, Vyasarayani C P, McPhee J. Simplification and order reduction of lithium-ion battery model based on porous-electrode theory[J]. Journal of Power Sources, 2012,198:329-337.
    [7] Martínez-Rosas E, Vasquez-Medrano R, Flores-Tlacuahuac A. Modeling and simulation of lithium-ion batteries[J]. Computers Chemical Engineering, 2011,35(9):1937-1948.
    [8] 王晓文, 陈俊彩, 王辛龙, 等. AN、DME对锂电池电解液电导率的影响[J]. 电池工业, 2011,16(06).
    [9] 周骏, 李琪, 乔庆东. 提高锂离子电池正极材料LiFePO4电导率的方法[J]. 化工科技, 2011,19(02):55-58.
    [10] Rissouli K, Benkhouja K, Ramos-Barrado J R, et al. Electrical conductivity in lithium orthophosphates[J]. Materials Science and Engineering: B, 2003,98(3):185-189.
    [11] Renganathan S, White R E. Semianalytical method of solution for solid phase diffusion in lithium ion battery electrodes: Variable diffusion coefficient[J]. Journal of Power Sources, 2011,196(1):442-448.
    [12] Andriiko A A, Rudenok P V, Nyrkova L I. Diffusion coefficient of Li in solid-state rechargeable battery materials[J]. Journal of Power Sources, 1998,72(2):146-149.
    [13] 熊利芝, 梁凯, 何则强. 锂离子在LiVOPO4中的扩散系数的测定[J]. 吉首大学学报(自然科学版), 2011,32(01):85-87.
    [14] Bohnke C, Bohnke O, Fourquet. Electrochemical intercalation of lithium into LiLaNb2O7 perovskite [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997,144(4):1151-1158.
    [15] Umedaa M, Dokkoa K, Fujitaa Y, et al. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part I. Graphitized carbon[J]. Electrochimica Acta, 2001,47(6):885-890.
    [16] 王连亮, 马培华, 张琨, 等. 库仑法和电化学阻抗法测量LiFePO4锂离子扩散系数[J]. 盐湖研究, 2009,17(03):53-55.
    [17] 粟智, 叶世海, 王永龙. 锂离子电池正极材料LiMnO2的电化学阻抗谱研究[J]. 化学通报, 2009(11).
    [18] Shaju K M, Rao G V S, Chowdari B V R. EIS and GITT studies on oxide cathodes, O2-Li(2/3) x(Co0.15Mn0.85)O2 (x=0 and 1/3)[J]. Electrochimica Acta, 2003,48(18):2691-2703.
    [19] Tang X, Pan C, He L, et al. A novel technique based on the ratio of potentio-charge capacity to galvano-charge capacity (RPG) for determination of the diffusion coefficient of intercalary species within insertion-host materials: theories and experiments[J]. Electrochimica Acta, 2004,49(19):3113-3119.
    [20] Deiss E. Spurious potential dependence of diffusion coefficients in Li insertion electrodes measured with PITT[J]. Electrochimica Acta, 2002,47(25):4027-4034.
    [21] Liu P, Wu H. Diffusion of lithium in carbon[J]. Solid State Ionics, 1996,92(1-2):91-97.
    [22] ZHENG W, SHUI M, SHU J, et al. GITT studies on oxide cathode LiNi1/3Co1/3Mn1/3O2 synthesized by citric acid assisted high-energy ball milling[J]. Bulletin of Materials Science, 2013,36(3):495-498.
    [23] Deiss E. Spurious chemical diffusion coefficients of Li in electrode materials evaluated with GITT[J]. Electrochimica Acta, 2005,50(14):2927-2932.
    [24] Dees D W, Kawauchi S, Abraham D P, et al. Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode[J]. Journal of Power Sources, 2009,189(1):263-268.
    [25] Kun Tang X Y J S. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS[J]. Electrochimica Acta, 2011,56(13):4869-4875.
    [26] 粟智, 翁之望. 交流阻抗法测定锂离子电池正极材料的导电率[J]. 计算机与应用化学, 2011,28(5):623-624.
    [27] 庄全超, 刘文元, 武山. 锂离子电池有机电解液电导率的影响因素[J]. 电池工业, 2005,10(5):302-304.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

魏学哲,杨静,刘耀锋,朱建功.锂离子动力电池内阻模型与实验研究[J].同济大学学报(自然科学版),2015,43(10):1542~1549

复制
分享
文章指标
  • 点击次数:3691
  • 下载次数: 1850
  • HTML阅读次数: 47
  • 引用次数: 0
历史
  • 收稿日期:2014-07-13
  • 最后修改日期:2015-05-19
  • 录用日期:2015-09-14
  • 在线发布日期: 2015-10-26
文章二维码