According to the porous electrode theory, a simulation model of lithium ion power batteries is established. The preliminary analysis of the model indicates that the internal factors which affect the battery internal resistance is the solid phase diffusion coefficient of the electrodes and electronic conductivity, ion conductivity and electrodes conductivity of the battery. The Galvanostatic Intermittent Titration Technique (GITT) is applied to a lithium iron phosphate half cell and a graphite half cell for solid phase diffusion coefficient measurement. The Electrochemical Impedance Spectroscopy(EIS) is applied to a lithium iron phosphate half cell and a graphite half cell for electrical conductivity measurement. The polarization resistance of the battery depends on the lithium ion diffusion coefficient in the anode materials. And the ohmic resistance of the battery depends on the electrical conductivity of the battery.
[5] Churikov A V, Volgin M A, Pridatko K I. On the determination of kinetic characteristics of lithium intercalation into carbon[J]. Electrochimica Acta, 2002,47(17):2857-2865.
[6] Dao T, Vyasarayani C P, McPhee J. Simplification and order reduction of lithium-ion battery model based on porous-electrode theory[J]. Journal of Power Sources, 2012,198:329-337.
[7] Martínez-Rosas E, Vasquez-Medrano R, Flores-Tlacuahuac A. Modeling and simulation of lithium-ion batteries[J]. Computers Chemical Engineering, 2011,35(9):1937-1948.
[10] Rissouli K, Benkhouja K, Ramos-Barrado J R, et al. Electrical conductivity in lithium orthophosphates[J]. Materials Science and Engineering: B, 2003,98(3):185-189.
[11] Renganathan S, White R E. Semianalytical method of solution for solid phase diffusion in lithium ion battery electrodes: Variable diffusion coefficient[J]. Journal of Power Sources, 2011,196(1):442-448.
[12] Andriiko A A, Rudenok P V, Nyrkova L I. Diffusion coefficient of Li in solid-state rechargeable battery materials[J]. Journal of Power Sources, 1998,72(2):146-149.
[14] Bohnke C, Bohnke O, Fourquet. Electrochemical intercalation of lithium into LiLaNb2O7 perovskite [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1997,144(4):1151-1158.
[15] Umedaa M, Dokkoa K, Fujitaa Y, et al. Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part I. Graphitized carbon[J]. Electrochimica Acta, 2001,47(6):885-890.
[18] Shaju K M, Rao G V S, Chowdari B V R. EIS and GITT studies on oxide cathodes, O2-Li(2/3) x(Co0.15Mn0.85)O2 (x=0 and 1/3)[J]. Electrochimica Acta, 2003,48(18):2691-2703.
[19] Tang X, Pan C, He L, et al. A novel technique based on the ratio of potentio-charge capacity to galvano-charge capacity (RPG) for determination of the diffusion coefficient of intercalary species within insertion-host materials: theories and experiments[J]. Electrochimica Acta, 2004,49(19):3113-3119.
[20] Deiss E. Spurious potential dependence of diffusion coefficients in Li insertion electrodes measured with PITT[J]. Electrochimica Acta, 2002,47(25):4027-4034.
[21] Liu P, Wu H. Diffusion of lithium in carbon[J]. Solid State Ionics, 1996,92(1-2):91-97.
[22] ZHENG W, SHUI M, SHU J, et al. GITT studies on oxide cathode LiNi1/3Co1/3Mn1/3O2 synthesized by citric acid assisted high-energy ball milling[J]. Bulletin of Materials Science, 2013,36(3):495-498.
[23] Deiss E. Spurious chemical diffusion coefficients of Li in electrode materials evaluated with GITT[J]. Electrochimica Acta, 2005,50(14):2927-2932.
[24] Dees D W, Kawauchi S, Abraham D P, et al. Analysis of the Galvanostatic Intermittent Titration Technique (GITT) as applied to a lithium-ion porous electrode[J]. Journal of Power Sources, 2009,189(1):263-268.
[25] Kun Tang X Y J S. Kinetic analysis on LiFePO4 thin films by CV, GITT, and EIS[J]. Electrochimica Acta, 2011,56(13):4869-4875.