基于独立覆盖的高阶流形方法
CSTR:
作者:
作者单位:

同济大学土木工程学院、土木工程防灾国家重点实验室,同济大学土木工程学院、土木工程防灾国家重点实验室

中图分类号:

TU443

基金项目:

国家自然科学基金(11472194);国家重点基础研究发展计划(2011CB013800);教育部新世纪优秀人才支持计划(NCET-12-0415)


High order Manifold Method with Independent Covers
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    提出了一种基于独立覆盖的高阶流形方法(ICMM).该方法基于完全独立的物理覆盖,在物理覆盖上可以定义一至高阶的覆盖位移函数,在独立的物理覆盖间采用具有真实物理意义的弹簧(区别于DDA(Discontinuous Deformation Analysis)和DEM(Discrete Element Method)方法中为迭代需要而设置的虚拟弹簧),避免了一般流形方法需要复杂的覆盖生成等前处理算法的困难,消除了高阶流形方法特有的线性相关性带来的总体刚度矩阵奇异性的问题,可以方便地应用于连续体分析、从连续到非连续破坏以及完全非连续问题的统一分析.算例分析初步验证了本文方法的正确性和有效性.

    Abstract:

    An independent cover based manifold method (ICMM) is presented. In the ICMM, various high order cover functions can be naturally employed at the independent covers, and the springs with real physical significance are defined between the adjacent independent covers, which are different from the virtual springs in DDA(Discontinuous Deformation Analysis) and DEM(Discrete Element Method). The requirement for the complex algorithm for cover generation in conventional NMM(Numerical Manifold Method), and the rank deficiency due to the linear dependence of the global degrees of freedom in high order NMM are well treated in the present ICMM. The continuous deformation analysis, the discontinuous deformation analysis, and the switch from continuous analysis to discontinuous analysis can be unified in a same framework in the ICMM. Several test examples indicate the correctness and the validity of the proposed method.

    参考文献
    [1]Ma G W, An X M, He L. The numerical manifold method: a review [J]. International Journal of Computational Methods, 2010,7: 1-32.
    [2]Zheng H, Xu D D. New strategies for some issues of numerical manifold method in simulation of crack propagation [J]. International Journal for Numerical Methods in Engineering, 2014, 97: 986-1010.
    [3]Cai Y C, Wu J, Atluri S N. A new implementation of the numerical manifold method (NMM) for the modeling of non-collinear and intersecting cracks [J]. CMES: Computer Modeling in Engineering Sciences, 2013, 92(1): 63-85.
    [4]李树忱,程玉民. 数值流形方法及其在岩石力学中的应用[J].力学进展.2004, 34(4):446-454.Li S C, Cheng Y M. Numerical manifold method and its applications in rock mechanics [J]. Advances in Mechanics. 2004, 34(4):446-454.
    [5]陈刚,刘佑荣.流形元覆盖系统的有向图遍历生成算法研究[J].岩石力学与工程学报,2003,22(5):711-716.Chen G, Liu Y R. Generation of cover system for numerical manifold in travel theory of the oriented graph [J]. Chinese Journal of Rock Mechanics and Engineering. 2003, 22(5):711-716.
    [6]李海枫,张国新. 流形切割及有限元网格覆盖下的三维流形单元生成[J]. 岩石力学与工程学报,2010, 29(4): 731-742.Li H F, Zhang G X, Shi G H. Manifold cut and generation of three-dimensional element under FE mesh cover [J]. Chinese Journal of Rock Mechanics and Engineering. 29(4):731-742.
    [7]姜清辉,周创兵,张煜.三维数值流形方法的点-面接触类型[J].计算力学学报,2006,23(3):569-572.Jiang Q H, Zhou C B, Zhang Y. A model of point-to-face contact for three-dimensional numerical manifold method [J]. Chinese Journal of Computational Mechanics, 2006, 23(3):569-572.
    [8]朱爱军,邓安福,颜昌武,等.岩体材料物理网格对流形元覆盖系统形成的影响[J]. 岩土力学,2004,25(2): 1933-1941.Zhu A J, Deng A F, Yan C W, et.al. Effects of physical grid in rock mass for generation of cover system for numerical manifold method [J]. Rock and Soil Mechanics, 2004,25(2):1933-1941.
    [9]武杰,蔡永昌. 基于四边形网格的流形方法覆盖系统生成算法. 同济大学学报, 2013,41(5): 641-645.Wu J, Cai Y C. Generation Algorithm of the Cover System in Manifold Method with Quadrangular Meshes[J]. Journal of Tongji University, 2013, 41(5): 641-645.
    [10]蔡永昌,朱合华,夏才初.流形方法覆盖系统自动生成算法[J].同济大学学报,2004, 32(3): 585-590.Cai Y C, Zhu H H, Xia C C. Automatically forming of cover system in numerical manifold method[J]. Journal of Tongji University. 2004, 32(3): 585-590.
    [11]郭朝旭, 郑宏. 高阶数值流形方法中的线性相关问题研究[J]. 工程力学, 2012,29(12):228-232.Ge C X, Zheng H. Study on linear dependence problem in high-order numerical manifold method[J]. Engineering Mechanics, 2012,29(12):228-232.
    [12]Babu?ka I, Melenk J M. Partition of unity method[J]. International Journal for Numerical Methods in Engineering, 2001, 40: 727-758.
    [13]Rajendran S, Zhang B R. A “FE-meshfree“ QUAD4 element based on partition of unity[J]. Computer Methods in Applied Mechanics and Engineering, 2007, 197:128-147.
    [14]Cai Y C, Zhuang X Y, Augarde C E. A new partition of unity finite element free from the linear dependence problem and possessing the delta property[J]. Computer Methods in Applied Mechanics and Engineering, 2010, 199(17) : 1036-1043.
    [15] An X M, Li L X, Ma G W, Zhang H H. Prediction of rank deficiency in partition of unity-based methods with plane triangular or quadrilateral meshes[J]. Computer Methods in Applied Mechanics and Engineering, 2011,200:665-674.
    [16]Tian R, Yagawa G, Terasaka H. Linear dependence problems of partition of unity-based generalized FEMs[J]. Computer Methods in Applied Mechanics and Engineering, 2006, 195: 4768-4782.
    [17]De Luycker E, Benson D J, Belytschko T, et al. X-FEM in isogeometric analysis for linear fracture mechanics[J]. International Journal for Numerical Methods in Engineering, 2011, 87: 541-565.
    [18]苏海东,祁勇峰,龚亚琦,颉志强,崔建华.任意形状覆盖的数值流形方法初步研究[J]. 长江科学院院报, 2013, 30(12): 91-96.Su H D, Qi Y F, Gong Y Q, et al. Preliminary research of numerical manifold method based on covers of arbitrary shape[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(12): 91-96.
    [19]苏海东,祁勇峰. 部分重叠覆盖流形法的覆盖加密方法[J].长江科学院院报, 2013,30(7):95-100.Su H D, Qi Y F. Cover refinement for numerical manifold method with partially overlapping covers [J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(7):95-100.
    [20]Cai Y C, Zhu H H, Zhuang X Y. A continuous/ discontinuous deformation analysis (CDDA) method based on deformable blocks for fracture modeling[J]. Frontiers of Structural and Civil Engineering, 2013, 7(4): 369-378.
    [21]Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256.
    [22]Augarde C E, Deeks A J. The use of Timoshenko’s exact solution for a cantilever beam in adaptive analysis[J]. Finite Elements in Analysis and Design, 2008, 44(9-10): 525-656.
    [23]Chen X M, Cen S, Long Y Q, Yao Z H. Membrane elements insensitive to distortion using the quadrilateral area coordinate method [J]. Computers Structures. 82 (2004) 35-54.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

蔡永昌,刘高扬.基于独立覆盖的高阶流形方法[J].同济大学学报(自然科学版),2015,43(12):1794~1800

复制
分享
文章指标
  • 点击次数:2067
  • 下载次数: 1102
  • HTML阅读次数: 42
  • 引用次数: 0
历史
  • 收稿日期:2014-09-04
  • 最后修改日期:2015-10-19
  • 录用日期:2015-09-14
  • 在线发布日期: 2015-12-28
文章二维码