双阈值法地面激光点云强度图像边缘提取
CSTR:
作者单位:

同济大学,同济大学

中图分类号:

P232

基金项目:

“十二五”国家科技支撑计划(2013BAK08B00)


Dual-threshold Algorithm for Intensity Image Edge Extraction of Terrestrial Laser Scanning Point Cloud
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [20]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    在扩展目标激光测距方程的基础上,根据扫描仪的辐射机制,分析了利用强度图像进行点云边缘提取的可行性及强度图像中非边缘点、边缘点及噪声点的八邻域特征。根据各类点的八邻域特征,提出了一种双阈值判别准则,用于提取强度图像中的非边缘点、边缘点与噪声点。根据判别结果:对非边缘点与噪声点进行中值滤波;对边缘点,其灰度值保持不变。最后利用Canny算子对滤波后的强度图像进行边缘提取,并通过实验对该方法进行了验证,对不同的双阈值选取结果进行了讨论分析。实验结果表明:利用原始激光强度图像可有效实现地面激光点云的边缘提取,双阈值法不仅能去除点云强度图像中的椒盐噪声,同时能保证边缘提取的精度。

    Abstract:

    Based on the laser range equation for the extended Lambertian targets and the radiometric principles of laser scanners, the feasibility of original intensity image edge extraction is demonstrated, along with the eight neighborhood characteristics of non-edge points, edge points and noise points. By utilizing the eight neighborhood characteristics, a new dual-threshold criterion is proposed to distinguish and extract different points. According to the judgment results, the median filter algorithm is applied to filter the non-edge points and noise points, while for the edge points, their gray values keep unchanged. Finally, edge extraction is conducted by adopting the “Canny” algorithm. The proposed method is verified through actual experiment and the results of different dual-thresholds are discussed and analyzed. The results reveal that edge extraction can be effectively conducted on the raw intensity image, and the proposed approach can remove the salt and pepper noise of the intensity image as well as ensure the accuracy of edge extraction.

    参考文献
    [1] 王宗跃,马洪超,徐宏根等.海量点云的边缘快速提取算法[J].计算机工程与应用.2010,46(36):213-215.
    [2] 邓非.LiDAR数据与数字摄影测量的配准和地物提取研究[D].武汉:武汉大学,2006.
    [3] 李宝顺,岑红燕,包亚萍等.基于滚动圆的点云数据边缘检测算法[J].计算机工程与设计,2013,34(5):1836-1840.
    [4] Coleman S A, Scotney B W, Suganthan S. Edge detecting for range data using laplacian operators[J]. Image Processing, IEEE Transactions on, 2010, 19(11): 2814-2824.
    [5] Demarsin K, Vanderstraeten D, Volodine T, et al. Detection of closed sharp edges in point clouds using normal estimation and graph theory[J]. Computer-Aided Design, 2007, 39(4): 276-283.
    [6] 黄涛,胡以华,赵钢等. 基于激光成像雷达距离图像的目标提取与分类技术[J]. 红外与毫米波学报. 2011, 30(2): 179-183.
    [7] 史文中,李必军,李清泉. 基于投影点密度的车载激光扫描距离图像分割方法[J]. 测绘学报. 2005, 34(2): 95-100.
    [8] 郭裕兰,鲁敏,谭志国,等. 距离图像局部特征提取方法综述[J]. 模式识别与人工智能. 2012, 25(5): 783-791.
    [9] K Kraus, N Pfeifer. Determination of terrain models in wooded areas with airborne laser scanner data[J].ISPRS Journal of Photogrammetry and Remote Sensing,1998,53:193-203.
    [10]Peter Axelsson.Processing of laser scanner data algorithms and applications[J].ISPRS Journal of Photogrammetry and Remote Sensing,1999,54:138-147
    [11]张毅,闫利. 地面激光点云强度噪声的三维扩散滤波方法[J]. 测绘学报, 2013, 42(4): 568-573.
    [12]Pfeifer N, Dorninger P, Haring A, et al. Investigating terrestrial laser scanning intensity data: quality and functional relations[C]//Proceedings of the VIII Conference on Optical 3D measurement Technology. Zurich:[s.n.], 2007:328-337.
    [13] 赖旭东,万幼川. 基于平坦度的激光雷达强度图像的滤波算法[J]. 中国激光. 2005, 32(10): 1325-1329.
    [14] 赖旭东,万幼川. 一种针对激光雷达强度图像的滤波算法研究[J]. 武汉大学学报(信息科学版). 2005, 30(2): 158-160.
    [15] H?fle B, Pfeifer N. Correction of laser scanning intensity data: Data and model-driven approaches[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2007, 62(6): 415-433.
    [16] Yan W Y, Shaker A, Habib A, et al. Improving classification accuracy of airborne LiDAR intensity data by geometric calibration and radiometric correction[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2012, 67: 35-44.
    [17] Coren F, Sterzai P. Radiometric correction in laser scanning[J]. International Journal of Remote Sensing. 2006, 27(15): 3097-3104.
    [18]Ding Q, Chen W, King B, et al. Combination of overlap-driven adjustment and Phong model for LiDAR intensity correction[J]. ISPRS Journal of Photogrammetry and Remote Sensing. 2013, 75: 40-47.
    [19]戴永江.激光雷达原理[M].北京:国防工业出版社,2002.
    [20]谭凯,程效军. 激光强度值改正模型与点云分类精度[J]. 同济大学学报 (自然科学版). 2014, 42(1):131-135.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谭凯,程效军.双阈值法地面激光点云强度图像边缘提取[J].同济大学学报(自然科学版),2015,43(9):1425~1431

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2014-09-09
  • 最后修改日期:2015-05-17
  • 录用日期:2015-04-16
  • 在线发布日期: 2015-10-26
文章二维码