钢筋混凝土筒仓散料的静力相互作用分析
CSTR:
作者:
作者单位:

北京交通大学,北京交通大学,北京交通大学,北京交通大学

中图分类号:

TU249,TU37

基金项目:

国家自然科学基金面上项目资助(51478033, 51178029)


Static Interaction Analysis of RC Silo Structure Granular Material
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于亚塑性本构理论,对钢筋混凝土筒仓仓壁与散料颗粒体之间的静态压力作用进行有限元模拟.筒仓内散料颗粒采用Niemunis和Herle基于von Wolffersdorff修正的亚塑性本构模型;仓内散料颗粒与仓壁之间的相互作用采用基于库伦摩擦定律的面面接触关系.利用ABAQUS软件所建立的有限元模型,对筒仓散料静力相互作用进行数值模拟,并将数值模拟结果与我国、欧洲(ISO)、美国筒仓设计规范,以及筒仓经典压力理论及既有试验数据进行比较.同时,还对仓内散料颗粒材料种类、初始孔隙比、内摩擦角、摩擦系数、颗粒硬度和颗粒间应变进行参数分析,分析结果表明,散料颗粒的种类、初始孔隙比、仓内散料临界内摩擦角、颗粒硬度和颗粒间应变对筒仓散料静力相互作用影响较大.

    Abstract:

    Based on the hypoplastic constitutive theory, this paper aimed to analyze the pressure of RC cylinder silo wall exerted by the granular material using the finite element method (FEM). The granular material inside the silo was modeled with the modified von Wolffersdorff’s hypoplastic constitutive model by Niemunis and Herle. In order to simulate the interaction between silo wall and granular material, the contact pair algorithm was used which could model pure master slave surfaces considering the Coulomb’s friction law. Using the ABAQUS finite element numerical model, the static interaction between RC silo wall and the granular material was analyzed,and the numerical results are compared to the codes of RC silos in China, Europe(ISO), USA, the classical theories of pressure exerted by the granular materials and the existing experimental data. Meanwhile, this paper also analyzed material parameters concluding a variety of granular materials, initial void ratio, critical friction angle, friction coefficient, granulate hardness and the granular strain. The analytical results show that the effects of initial void ratio, critical friction angle, granular strain, granulate hardness, and the variety of granular materials are more significant than any other material parameters.

    参考文献
    [1]GB 50077-2003.钢筋混凝土筒仓设计规范[S]. 北京: 中国计划出版社, 2004GB 50077-2003.Code for design of reinforced concrete silos [S]. Beijing: China Planning Press, 2004. (in Chinese)
    [2]European Committee for Standardization, Eurocode 8: Design of structures for earthquake resistance, part 4: silos, tanks and pipelines [S]. 2006.
    [3]American Concrete Institute (ACI). Standard practice for design and construction of concrete silos and stacking tubes for storing granular materials [S].1997, 313-77, Detroit.
    [4]John W. Carson, Limits of silo design codes [J]. Practice Periodical on Structural Design and Construction.2014,10.10 61/(ASCE) SC.1943-5576.0000227 , 04014030.
    [5]陈长冰.筒仓内散体侧压力沿仓壁分布研究 [D].合肥:合肥工业大学, 2006.Chen Changbing. Research on distribution of lateral bulk- solid pressures on silos’ walls [D].Hefei: Hefei University of Technology, 2006. (in Chinese)
    [6]Holst, J., Ooi, J., Rotter, J., Rong, G. Numerical modeling of silo filling. I: continuum analyses [J]. Journal of Engineering Mechanics. 1999, 125(1): 94-103.
    [7]Holst, J., Ooi, J., Rotter, J., Rong, G. Numerical modeling of silo filling. II: discrete element analyses [J]. Journal of Engineering Mechanics. 1999, 125(1): 104-110
    [8]Xuewen Wan, Zhaojian Yang, Xuefeng Shu, Jiling Feng. The static contact statuses between granular materials and flat-bottomed steel silos [J]. Powder Technology. 2013, 235: 1053-1059.
    [9]M. Guaital, A. Couto, F. Ayuga. Numerical simulation of wall pressure during discharge of granular material from cylindrical silos with eccentric hoppers [J]. Biosystems Engineering. 2003, 85(1): 101-109.
    [10]Herle, I., Gudehus, G. Determinations of parameters of a hypoplastic constitutive model from properties of grain assemblies [J]. Mechanics of Cohesive Materials. 1999, Mech. Cohes.-Frict. Mater. 4: 461-486.
    [11]Von Wolffersdorff. A hypoplastic relation for granular materials with a predefined limit state surface [J]. Mechanics of Cohesive Materials. 1996, 1(3): 251-271.
    [12]Niemunis A., Herle I. Hypoplastic model for cohesive soils with elastic strain range [J]. Mechanics of Cohesive Materials, 1997, 2(4): 279-299.
    [13]杨鸿, 杨代恒, 赵阳. 钢筒仓散料静态压力的三维有限元模拟[J]. 浙江大学学报(工学版), 2011,45(8): 1423-1429.Yang Hong, Yang Daiheng, Zhao Yang. Three-dimensional finite element simulation of static granular material pressure for steel silos [J]. Journal of Zhejiang University (Engineering Science), 2011, 45(8): 1423-1429. (in Chinese)
    [14]Juan A, Moran J M, Guerra M I, et al. Establishing stress state of cylindrical metal silos using finite element method: comparison with ENV 1993 [J]. Thin Walled Structures. 2006, 44(11): 1192~1200.
    [15]杨代恒.钢筒仓设计研究及散料压力的数值模拟 [D].杭州:浙江大学, 2008.Yang Daiheng. Design research of steel silos and numerical simulation of bulk materials pressure [D]. Hangzhou: Zhejiang University, 2008. (in Chinese)
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周长东,郭坤鹏,孟令凯,张晓阳.钢筋混凝土筒仓散料的静力相互作用分析[J].同济大学学报(自然科学版),2015,43(11):1656~1661

复制
分享
文章指标
  • 点击次数:1651
  • 下载次数: 1134
  • HTML阅读次数: 44
  • 引用次数: 0
历史
  • 收稿日期:2014-10-21
  • 最后修改日期:2015-08-02
  • 录用日期:2015-04-01
  • 在线发布日期: 2015-11-16
文章二维码