氧化催化转化器对柴油机颗粒物排放特性的影响
CSTR:
作者:
作者单位:

同济大学汽车学院,同济大学汽车学院,同济大学汽车学院,同济大学汽车学院

中图分类号:

TK427

基金项目:

本项研究工作得到了上海市科学技术委员会的资助,资助课题编号为13XD1403800


Effects of Diesel Oxidation Catalyst Technology on Characteristics of Particle from a Diesel Engine
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    以某高压共轨重型柴油机为样机,研究氧化催化转化器(Diesel Oxidation Catalyst,DOC)对柴油机颗粒排放规律的影响.研究结果表明,各工况下,DOC后测点颗粒物质量浓度相对于前测点均有所下降,降幅随转速升高而减小,随着负荷的增大变化不大;外特性下,DOC对总颗粒、核态颗粒和聚集态颗粒的转化率均随着转速增加而波动下降,其平均转化率分别为21.5%,26.2%和15.4%;最大转矩转速1 400 r·min-1负荷特性下,DOC对总颗粒、核态颗粒、聚集态颗粒的转化率均随着负荷的增大先下降再上升,其平均转化率为34.6%,38.8%和27.3%;DOC对核态颗粒物的转化率高于聚集态颗粒物,在粒径为9~12 nm的范围内转化率达到最高,其他粒径范围内转化率大多介于20%~40%之间.

    Abstract:

    The effects of diesel oxidation catalyst on the characteristics of particle was studied on a heavy duty diesel engine. The results show that particle mass concentrations of measuring point after DOC decrease compared to those before DOC, and the decreasing range reduces with the increase of engine speed, but differs insignificantly with the increase of engine load. When the engine is operating at full load, the conversion rates of total particles, nucleation mode particles and accumulation mode particles decline with the increase of engine speed, with an average conversion rate of 21.5%, 26.2% and 15.4%, respectively. At an engine speed of 1 400 r·min-1, the conversion rates of total particles, nucleation mode particles and accumulation mode particles decrease first and then increase with the increase of engine load, with an average conversion rate of 34.6%, 38.8% and 27.3%, respectively. The particle conversion rates of DOC to nucleation mode particles are higher than those of accumulation mode particles, and reach the peak when the particle size range from 9 to 12 nm. However, the particle conversion rate for the rest of the particle size vary from 20% to 40%.

    参考文献
    [1]Kinnunen T, Matilainen P, Scheder D, et al. Particle oxidation catalyst (POC?)—from diesel to GDI—studies on particulate number and mass efficiency[J]. SAE Technical Paper, 2012: 01-0845.
    [2]Savvidis D, Bounos K. Measuring Smoke Emissions from Different Generations Diesel Passenger Cars in Antwerp-Belgium During Winter and Spring[R]. SAE Technical Paper, 2014.
    [3]楼狄明,任进,谭丕强,胡志远,沈航泉. 柴油轿车燃用F-T柴油混合燃料时的模态排放特性[J]. 汽车工程学报,2011,02:42-47.
    [4]Elias V, Leonidas N, Panayiotis P, et al. An investigation on the physical, chemical and ecotoxicological characteristics[J]. Environmental Pollution, 2009, 157, 2320–2327
    [5]Srivastava A, Sharma A, Yadav S, et al. Gene expression profiling of candidate genes in peripheral blood mononuclear cells for predicting toxicity of diesel exhaust particles[J]. Free Radical Biology and Medicine, 2014, 67: 188-194.
    [6]Ristovski Z D, Miljevic B, Surawski N C, et al. Respiratory health effects of diesel particulate matter[J]. Respirology, 2012, 17(2): 201-212.
    [7]Langridge J M, Lack D, Brock C A, et al. Evolution of aerosol properties impacting visibility and direct climate forcing in an ammonia‐rich urban environment[J]. Journal of Geophysical Research: Atmospheres (1984–2012), 2012, 117(D21).
    [8]陈熊. 在用柴油车上颗粒物后处理装置应用研究[D].武汉理工大学,2012.
    [9]Florio S, Pellegrini L, Alf M, et al. Chemical and Spectroscopic Characterization of SOF and Soot from a Euro-4 Diesel Engine Fueled by Model Fuels[R]. SAE Technical Paper, 2011.
    [10]Prikhodko V Y, Curran S J, Barone T L, et al. Emission characteristics of a diesel engine operating with in-cylinder gasoline and diesel fuel blending[R]. SAE Technical Paper, 2010.
    [11]Ballesteros R, Monedero E, Guillen-Flores J. Determination of aldehydes and ketones with high atmospheric reactivity on diesel exhaust using a biofuel from animal fats[J]. Atmospheric Environment, 2011, 45(16): 2690-2698.
    [12]Wiebenga M H, Kim C H, Schmieg S J, et al. Deactivation mechanisms of Pt/Pd-based diesel oxidation catalysts[J]. Catalysis Today, 2012, 184(1): 197-204.
    [13]Leray A, Guy A, Makarov M, et al. Plasma-Assisted Diesel Oxidation Catalyst on Bench Scale: Focus on Light-off Temperature and NOx Behavior[J]. Topics in Catalysis, 2013, 56(1-8): 222-226.
    [14]楼狄明,温雅,谭丕强,纪丽伟. 连续再生颗粒捕集器对柴油机颗粒排放的影响[J]. 同济大学学报(自然科学版), 2014, 42(8):1238-1244
    [15]王军方,丁焰,尹航,葛蕴珊,王小臣,谭建伟,何超. DOC技术对柴油机排放颗粒物数浓度的影响[J]. 环境科学研究,2011,07:711-715.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

楼狄明,林浩强,谭丕强,胡志远.氧化催化转化器对柴油机颗粒物排放特性的影响[J].同济大学学报(自然科学版),2015,43(6):0888~0893

复制
分享
文章指标
  • 点击次数:2079
  • 下载次数: 1423
  • HTML阅读次数: 62
  • 引用次数: 0
历史
  • 收稿日期:2014-10-26
  • 最后修改日期:2015-03-10
  • 录用日期:2015-01-19
  • 在线发布日期: 2015-06-10
文章二维码