锰酸镧钙钛矿型脱硫剂的制备及其性能评价
CSTR:
作者:
作者单位:

同济大学,同济大学,上海电力学院

中图分类号:

TQ546.5

基金项目:

上海市科学技术委员会科研攻关项目(15dz1200703, 12dz1201702)


Preparation and Performance of Lanthanum Manganate Perovskite Desulfurizer
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [34]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    以分子筛为载体,硝酸镧和硝酸锰为主要原料,通过溶胶凝胶法制备了锰酸镧钙钛矿型高温脱硫剂,通过氮气吸/脱附、X射线衍射、扫描电镜对硫化前后的织构、物相和微观结构进行表征,并基于表征结果探究脱硫机理.在固定床反应器中考察了反应温度、空速、进口硫化氢浓度、载体对脱硫性能的影响.结果表明,在500~700 ℃温度范围内,锰酸镧均具有较高的脱硫精度及穿透硫容,最佳反应温度为600 ℃;空速及进口硫化氢浓度越大,脱硫剂越容易穿透,穿透硫容越低;与三氧化二铝及纳米二氧化硅载体相比,分子筛负载锰酸镧钙钛矿型脱硫剂穿透硫容更大,脱硫精度更高.

    Abstract:

    Perovskite lanthanum manganate hightemperature desulfurizer was prepared using lanthanum nitrate, manganese nitrate, and zeolite as the support via citric acid method. The fabrication, phase, and microstructure of asprepared adsorbents were characterized by the nitrogen adsorption/desorption, Xray diffraction, and scanning electron microscope and energy dispersive Xray spectrum techniques, respectively. The desulphurization mechanism was investigated based on the characterization results. The effects of reaction temperature, space velocity, inlet hydrogen sulfide content, and the support on desulphurization performance were studied. The results show that the desulfurizer has a high breakthrough sulfur capacity and exhibits a high degree of purification in the temperature range of 500 to 700 ℃, and the optimal reaction temperature is 600 ℃. As the space velocity and inlet hydrogen sulfide content increase, the breakthrough sulfur capacity and breakthrough time decrease. Compared to aluminium oxide and nanosilica, zeolite supported perovskite lanthanum manganate desulfurizer has a larger breakthrough sulfur capacity and a higher desulfurization precision.

    参考文献
    [1] 李春虎, 郭汉贤, 李彦旭, 等. 煤气化-蒸汽联合循环发电(IGCC)技术中的高温煤气热脱硫[J]. 煤炭转化, 1995, 18(4): 26-30.LI Chunhu, GUO Hanxian, LI Yanxu, et al. Hot gas cleanup for the Integrated Gasification Combined Cycle (IGCC) [J]. Coal Conversion, 1995, 18(4): 26-30.
    [2] 李彦旭, 李春虎, 郭汉贤, 等. 国内外高温煤气脱硫技术探讨[J]. 煤化工, 1998, 3(84): 20-24.LI Yanxu, LI Chunhu, GUO Hanxian, et al. On gas desulfurization at high temperature [J]. Coal Chemical Industry, 1998, 3(84): 20-24.
    [3] 梁美生, 李春虎, 谢克昌. 高温煤气脱硫剂的研究进展[J]. 煤炭转化, 2002, 25(1): 13-17.LIANG Meisheng, LI Chunhu, XIE Kechang. Research progress on high temperature desulfurizer [J]. Coal Conversion, 2002, 25(1): 13-17.
    [4] Liu H W, Ni W D, Li Z, et al. Strategic thinking on IGCC development in China [J]. Energy Policy, 2008, 36(1): 1-11.
    [5]孙剑峰, 刘建忠, 王洁, 等. 超声浸渍法制备高温煤气脱硫剂及其表征和活性研究[J]. 中国电机工程学报, 2010, 29(35): 83-88.SUN Jianfeng, LIU Jianzhong, WANG Jie, et al. Preparation of sorbents for hot-gas desulfurization by ultrasonic impregnation and its characterization and desulfurization activity [J]. Proceedings of the CSEE, 2010, 29(35): 83-88.
    [6] 梁斌, 汪涛, 吴潘. Mn/γ-Al2O3高温脱硫剂的制备[J]. 四川大学学报 (工程科学版), 2002, 34(1): 11-15.LIANG Bin, WANG Tao, WU Fan. Preparation of the Mn/γ-Al2O3 acceptor for high temperature regenerative desulfuration [J]. Journal of Sichuan University (Engineering Science Edition), 2002, 34(1): 11-15.
    [7] 梁斌, 王菊, 曾兵. 高温煤气可再生脱硫剂与脱硫过程[J].四川大学学报 (工程科学版), 2011, 43(6): 197-202.LIANG Bin, WANG Ju, ZENG Bing. Sulfur acceptor and high temperature regenerative sulfur removal from hot coal gas [J]. Journal of Sichuan University (Engineering Science Edition), 2011, 43(6): 197-202.
    [8] 郭婧, 王菊, 梁斌. 锰系可再生高温脱硫剂的制备及其性能测试[J]. 化工学报, 2013, 64(7): 2580-2586.GUO Jing, WANG Ju, LIANG Bin. Preparation and characterization of manganese-based regenerable sorbents for high temperature H2S removal. CIESC Journal, 2013, 64(7): 2580-2586.
    [9] Xie W, Chang L P, Wang D H, et al. Removal of sulfur at high temperatures using iron-based sorbents supported on fine coal ash [J]. Fuel, 2010, 89(4): 868-873.
    [10] Akiti J T T, Constant K P, Doraiswamy, et a1. Development of an advanced calcium-based sorbent for desulfurizing hot coal gas [J]. Advances in Environmental Research, 2001, 5(1): 31-38.
    [11] Kyotant T, Kawashima H, Tomita A, et al. Removal of H2S from hot gas in the presence of Cu-containing sorbents [J]. Fuel, 1989, 68(1): 74-79.
    [12] 朱永军, 上官炬, 梁丽彤等. 复合ZnO 高温煤气脱硫剂的物相、还原及硫化行为[J]. 2009, 25(1):108-113.ZHU Yongjun, SHANG Guanju, LIANG Litong et al. The phase, reduction sulfidation performance of the mixed ZnO hot coal gas desulfurization sorbents [J]. 2009, 25(1):108-113.
    [13] Bakker W J W, Kapteijn F, Moulijin J A. A high capacity manganese-based sorbent for regenerative high temperature desulfurization with direct sulfur production conceptual process application to coal gas cleaning [J] Chemical Engineering Journal, 2003, 96(1-3): 223-235.
    [14] Alonso L, Palacios J M, García, et a1. Characterization of Mn and Cu oxides as regenerable sorbents for hot coal gas desulfurization [J]. Fuel Processing Technology, 2000, 62(1): 31-44.
    [15] Ikenaga N, Ohgaito Y, Matsushima H, et a1. Preparation of zinc ferrite in the presence of carbon material and its application to hot-gas cleaning [J]. Fuel, 2004, 83(6): 661-669.
    [16] Huang J J, Zhao J T, Wei X F, et a1.Kinetic studies on the sulfidation and regeneration of zinc titanate desulfurization sorbent [J]. Powder Technology, 2008, 180(1-2): 196-202.
    [17] Dooley K M, Kalakota V, Adusumilli S. High-temperature desulfurization of gasifier effluents with rare earth and rare earth transition metal oxides [J]. Energy and Fuels, 2011, 25(3): 1213-1220.
    [18] Li R, Krcha M D, Janik M J, et al. Ce-Mn oxides for high-temperature gasifier effluent desulfurization [J]. Energy and Fuels, 2012, 26(11): 6765-6776.
    [19] Karvana O, Sirkecio?lu A, Atak?l H. Investigation of nano-CuO/mesoporous SiO2 materials as hot gas desulphurization sorbents [J]. Fuel Processing Technology, 2009, 90(12): 1452-1458.
    [20] Wan Z Y, Liu B S, Zhang F M, et a1. Characterization and performance of LaxFeyOz/MCM-41 sorbents during hot coal gas desulfurization [J]. Chemical Engineering Journal, 2011, 71(2): 594-602.
    [21] Liu B S, Wan Z Y, Zhan Y P, et a1. Desulfurization of hot coal gas over high-surface-area LaMeOx/MCM-41 sorbents [J]. Fuel, 2012, 98(8): 95-102.
    [22] Zhang F M, Liu B S, Zhang Y, et a1. Highly stable and regenerable Mn-based/SBA-15 sorbents for desulfurization of hot coal gas [J]. Journal of Hazardous Materials, 2012, 233-234(30): 219-227.
    [23] Zhang Z F, Liu B S, Wang F, Li J F. Fabrication and performance of xMnyCe/Hexagonal mesoporous silica sorbents with wormhole-like framework for hot coal gas desulfurization [J]. Energy and Fuels, 2013, 27: 7754-7761.
    [24] Gervasini A. Characterization of the texturalproperties of metal loaded ZSM-5 zeolites [J]. Applied Catalysis A: General, 1999, 180(1-2): 71-82.
    [25] Alifanti M, Kirchnerova J, Delmon B. Effect of substitution by cerium on the activity of LaMnO3 perovskite in methane combustion [J]. Applied Catalysis A: General, 2003, 245 (2): 231-243.
    [26] Wu Q, Mashiro S, Hitoshi O, et al. Immobilization of nanofibrous A- or B-site substituted LaMnO3 perovskite [J]. Material Research Bulletin, 2010, 45(9): 1330-1333.
    [27] Zhang C H, Guo Y L, Guo Y, et al. LaMnO3 perovskite oxides prepared by different methods for catalytic oxidation of toluene [J]. Applied Catalysis B: Environmental, 2014, 148-149 (27): 490-498.
    [28] Wang X P, Yu S S, Yang H L, et al. Selective catalytic reduction of NO by C2H2 over MoO3/HZSM-5 [J]. Applied Catalysis B: Environmental, 2007, 71(3-4): 246-253.
    [29] Zhang H Y, Cheng Y T, Tushar P V, et a1. Catalytic conversion of biomass-derived feed stocks into olefins and aromatics with ZSM-5: the hydrogen to carbon effective ratio [J]. Energy Environmental Science, 2011(4): 2297-2307.
    [30] Zhang Y P, Wang D, Zhang R L, et al. ZSM-5-Ln (Pc)2 catalyzed oxygen oxidation of thiophene [J]. Catalysis Communications, 2012, 29(5): 21-23.
    [31] 柳召永, 杨朝和, 张忠东等. 小晶粒ZSM-5的表征、磷改性及其在多产丙烯FCC催化剂中的应用[J]. 石油学报(石油加工), 2014, 30(3): 408-414.LIU Zhaoyong, YANG Zhaohe, ZHANG Zhongdong, et a1. Characterization, phosphorus modification of small particle ZSM-5 zeolite and its application in the FCC catalyst for propylene production [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(3): 408-414.
    [32] 陆璐, 张会贞, 朱学栋. 多级孔ZSM-5分子筛的合成及催化苯、甲醇烷基化反应的研究[J]. 石油学报(石油加工), 2012, 28(增刊1): 111-115.LU Lu, ZHANG Huizhen, ZHU Xuedong. Synthesis of hierarchical ZSM-5 and its application in benzene alkylation with methanol. Acta Petrolei Sinica (Petroleum Processing Section), 2012, 28(Z1): 111-115.
    [33] 姚军康, 陈明高, 岳祥龙等. 泡沫结构多级孔ZSM-5分子筛的制备与表征[J]. 石油学报(石油加工), 2014, 30(1): 145-150.YAO Junkang, CHEN minggao, YUE Xianglong, et al. Preparation and characterization of hierarchical ZSM-5 foam [J]. Acta Petrolei Sinica (Petroleum Processing Section), 2014, 30(1): 145-150.
    [34] 高春珍, 李春虎, 岳丽丽等. 氧化铈高温煤气脱硫剂的还原与硫化[J]. 煤炭转化, 2004, 27(1): 24-27.GAO Chunzhen, LI Chunhu, YUE Lili, et al. Study on reduction and sulfidation of CeO2 desulfurizer at high temperature [J]. Coal Conversion, 2004, 27(1): 24-27.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周伟国,刘东京,吴江.锰酸镧钙钛矿型脱硫剂的制备及其性能评价[J].同济大学学报(自然科学版),2016,44(2):303~308

复制
分享
文章指标
  • 点击次数:2088
  • 下载次数: 948
  • HTML阅读次数: 45
  • 引用次数: 0
历史
  • 收稿日期:2015-03-06
  • 最后修改日期:2015-11-30
  • 录用日期:2015-10-23
  • 在线发布日期: 2016-03-04
文章二维码