不同区划方案对宏观交通事故建模的影响
CSTR:
作者:
作者单位:

中南大学,中南大学 交通运输工程学院,中南大学

中图分类号:

U491.31

基金项目:

国家自然科学(71371192);霍英东教育基金会高等院校青年教师基金应用研究课题(142005);湖南省杰出青年基金项目(2015JJ1017).


Influence of Zonal Configurations on Macrolevel Traffic Safety Modeling
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    依托美国佛罗里达州Hillsborough县历史数据,分别提取人口普查单元组、交通分析小区、人口普查区、邮政投递区等4种区划方案的事故数据、路网交通特征数据和经济社会人口数据;基于贝叶斯方法构建负二项条件自回归模型,从模型拟合度、模型估计参数、小区事故黑面识别等3个方面定量评价不同区划方案对宏观交通安全分析结果的影响.研究表明:宏观交通安全分析结果会随着空间单元划分方式不同而产生显著差异;小区数目越少,事故预测越为准确;对比人口普查单元组、人口普查区和邮政投递区,基于交通分析小区的模型拟合度最低;变量中等家庭收入对分区规模最不敏感,其参数估计结果具有稳健性和可靠性.

    Abstract:

    Based on the historic data from Hillsborough County, Florida, U.S., the zonelevel factors including crashes counts, road network, traffic pattern, and various social economic factors were explicitly collected for four different zoning schemes, i.e. block groups, traffic analysis zones, census tracts, and zone improvement plan codes. Then, a Bayesian negative binomial model with conditional autoregressive prior was developed for each spatial units, respectively. The impacts of zonal variations on macrolevel safety modeling were investigated mainly from three aspects, i.e. model performance, model parameter estimates, as well as crash hotspots identification. Results revealed that statistical results based on different aggregation configurations could be significantly different. Zoning schemes with less number of zones tend to have higher crash prediction precision. Compared with block groups, census tracts, and zone improvement plan codes, traffic analysis zones level model preforms worst in terms of model goodness of fit. The variable of median household income shows consistently significant effects on crash frequency and is robust to variation in data aggregation.

    参考文献
    [1] 黄合来, 许鹏鹏, 马明, 等. 道路交通安全规划理论研究前沿[J]. 中国公路学报, 2014, 27(9): 90-97.HUANG Helai, XU Pengpeng, MA Ming, et al. Cutting edge research on transportation safety planning: A technical review [J]. China Journal of Highway and Transport, 2014, 27(9): 90-97.
    [2] Washington S, Metarko J, Fomunung I, et al. An inter-regional comparison: Fatal crashes in the southeastern and non-southeastern United States: Preliminary findings [J]. Accident Analysis and Prevention, 1999, 31(1-2): 135-146.
    [3] Aguero-valverde J, Jovanis P P. Spatial analysis of fatal and injury crashes in Pennsylvania [J]. Accident Analysis and Prevention, 2006, 38: 618-625.
    [4] Huang H L, Abdel-Aty M, Darwiche A L. County-Level crash risk analysis in Florida: Bayesian spatial modeling [J]. Transportation Research Board: Journal of the Transportation Research Board, 2010, 2148: 27-37.
    [5] Li Z B, Wang W, Liu P, et al. Using geographically weighted Poisson regression for county-level crash modeling in California [J]. Safety Science, 2013, 58: 89-97.
    [6] Haynes R, Jones A, Kennedy V, et al. District variations in road curvature in England and wales and their association with road-traffic crashes [J]. Environment and Planning A, 2007, 39(5): 1222-1237.
    [7] Abdel-Aty M, Siddiqui C, Huang H L. Integrating trip and roadway characteristics in managing safety at traffic analysis zones [J]. Transportation Research Record: Journal of the Transportation Research Board, 2011, 2213: 20-28.
    [8] Wang X S, Wu X W, Abdel-Aty M, et al. Investigating of road network features and safety performance [J]. Accident Analysis and Prevention, 2013, 56: 22-31.
    [9] Pulugurha S S, Duddu V R, Kotagirl Y. Traffic analysis zone level crash estimation models based on land use characteristics [J]. Accident Analysis and Prevention, 2013, 50: 678-687.
    [10] Xu P P, Huang H L. Modeling crash spatial heterogeneity: random parameter versus geographically weighting [J]. Accident Analysis and Prevention, 2015, 75: 16-25.
    [11] MacNab Y C. Bayesian spatial and ecological models for small-area accident and injury analysis [J]. Accident Analysis and Prevention, 2004, 36: 1019-1028.
    [12] Lee J, Abdel-Aty M, Choi K. Analysis of residence characteristics of at-fault drivers in traffic crashes [J]. Safety Science, 2014, 68: 6-13.
    [13] 王雪松, 吴杏薇, 金昱. 宏观交通安全建模研究与安全影响因素分析[J]. 同济大学学报: 自然科学版, 2012, 40(11): 1627-1633.WANG Xuesong, WU Xingwei, JIN Y. Macro level safety modeling and impact factor analysis [J]. Journal of Tongji University: Natural Science, 2012, 40(11): 1627-1633.
    [14] 黄合来, 邓雪, 许鹏鹏. 考虑空间自相关的贝叶斯事故预测模型[J]. 同济大学学报: 自然科学版, 2013, 41(9): 1378-1383.HUANG Helai, DENG Xue, XU Pengpeng. Bayesian crash prediction model considering spatial autocorrelation [J]. Journal of Tongji University: Natural Science, 2013, 41(9): 1378-1383.
    [15] 王雪松, 宋洋. 基于条件自回归模型的城市宏观安全分析[J]. 同济大学学报(自然科学版), 2014, 42(8): 1176-1180.WANG Xuesong, Song Yang. Macro-level safety analysis in urban using conditional autoregressive model [J]. Journal of Tongji University: Natural Science, 2014, 42(8): 1176-1180.
    [16] Xu P P, Huang H L, Dong N, et al. Sensitivity analysis in the context of regional safety modeling: Identifying and assessing the modifiable areal unit problem [J]. Accident Analysis and Prevention, 2014, 70: 110-120.
    [17] Abdel-Aty M, Lee J, Siddiqui C, et al. Geographical unit based analysis in the context of transportation safety planning [J]. Transportation Research Part A: Policy and Practice, 2013, 49: 62-75.
    [18] Peters A, MacDonald H. Unlocking the census with GIS [M]. ESRI Publication, 2004.
    [19] Thomas A, Best N, Lunn D, et al. GeoBUGS User Manual Version 1.2 [CP]. 2004.
    [20] Besag J, York J, Molli E A. Bayesian image restoration with two applications in spatial statistics [J]. The Annuals of the Institute of Statistics and Mathematics, 1991, 43(1): 1-59.
    [21] Spiegelhalter D J, Thomas A, Best N G, et al. WinBUGS version 1.4.1 User Manual [CP]. MRC Biostatistics Unit, Cambridge, UK, 2003.
    [22] Huang H L, Chin H C, Haque M M. Empirical evaluations of alternative approaches in identifying crash hotspots: Na?ve ranking, empirical Bayes, and full Bayes [J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2013: 32-41.
    [23] 王雪松, 李佳, 谢琨. 基于安全可提高空间的事故多发信控交叉口判别 [J]. 同济大学学报(自然科学版), 2015, 43(3): 410-415.WANG Xuesong, LI Jia, XIE Kun. Signalized intersection hotspot identification based on potential for safety improvement [J]. Journal of Tongji University: Natural Science, 2015, 43(3): 410-415.
    [24] Spiegelhalter D, Best N, Carlin B P, et al. Bayesian measures of model complexity and fit [J]. Journal of Royal Statistical Society B: Statistical Methodology, 2002, 64(4): 583-639.
    [25] Fortheringham S, Wong D. The modifiable areal unit problem in multivariate statistical analysis [J]. Environment and Planning A, 1991, 23(1): 1025-1044.
    [26] Swift A, Liu L, Uber J. Reducing MAUP bias of correlation statistics between water quality and GI illness [J]. Computers, Environment and Urban Systems, 2008, 32: 134-148.
    [27] Aarts L, Schagen I V. Driving speed and the risk of road crashes: A review [J]. Accident Analysis and Prevention, 2006, 38: 215-224.
    [28] Huang H L, Xu P P, Abdel-Aty M. Transportation safety planning: A spatial analysis approach [C]. Presented at the 92nd TRB annual meeting, Washington, D.C., 2012.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄合来,许鹏鹏,翟晓琪.不同区划方案对宏观交通事故建模的影响[J].同济大学学报(自然科学版),2016,44(3):0377~0382

复制
分享
文章指标
  • 点击次数:1773
  • 下载次数: 1094
  • HTML阅读次数: 67
  • 引用次数: 0
历史
  • 收稿日期:2015-04-23
  • 最后修改日期:2015-12-25
  • 录用日期:2015-10-10
  • 在线发布日期: 2016-03-25
文章二维码