Abstract:The plate on Winkler foundation with circumferential crack was divided into two areas under circular uniformly distributed load. Rigidplastic hypothesis was used inside the circumferential crack and linearelastic hypothesis was used outside it. Then, the elasticplastic solution to ultimate bearing capacity of plate on Winkler foundation was given. Besides, the position of annular crack was found on the condition of minimal ultimate bearing capacity, which could compensate for the defects that the location of the annular cracks could not be solved using the existing rigidplastic theory. It is more complete and has good expansibility. The result shows that the Meyerhof’s solution to ultimate bearing capacity of plate is larger and divergent when the relatively radius of circular uniformly distributed load is 2.925. The Meyerhof’s solution is 6% to 10% larger when the relatively radius of circular uniformly distributed load is between 0.09 and 0.7. Finally, a more convenient regression formula of ultimate bearing capacity of plate coefficient was proposed.