底部结构对高速列车流场及气动优化规律的影响
CSTR:
作者:
作者单位:

同济大学上海地面交通工具风洞中心,同济大学上海地面交通工具风洞中心,同济大学上海地面交通工具风洞中心,同济大学上海地面交通工具风洞中心

中图分类号:

U270.1

基金项目:

“十一五”国家科技支撑计划(2009BAG12A03B),上海市科学技术委员会重点实验室计划(11DZ260400)


Influences of Underbody Structures on Flow Field and Aerodynamic Optimization Laws of High Speed Train
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了得到底部结构对列车流场及气动阻力优化规律的影响,通过计算流体力学和正交试验设计分析的方法,研究真实复杂车体的底部流动和尾迹特征,得到了复杂车体气动阻力优化规律.结果表明,尾车鼻尖静压系数在底部结构影响下降低了0.06,尾车流动分离提前,两反对称尾涡核间横向距离增大,尾涡间夹角增大.头型概念设计时的拓扑简化车体模型可以作为真实复杂车体的气动阻力优化设计模型,但考虑底部结构使得头车参数优化的极差值减小、尾车参数的优化极差值增大.头车阻力优化重点为转向架周边结构,尾车阻力优化对流线型长度参数更加敏感.

    Abstract:

    In order to obtain the influence of underbody structures on flow field and aerodynamic drag optimization laws of high speed train, the computational fluid dynamic and the orthogonal experimental analysis methods were adopted to studied underbody flow field, wake and the optimization law in complex train model. The results indicated that the pressure coefficient drops 0.06 in nose region of the tail car, and bogies moved the flow separation of the tail car ahead. The distances and the angle between antisymmetric wake vortices cores increased. The simplified topology model in concept design was suitable for aerodynamic optimization in complex train model design. However underbody structures decreased the optimization range of the head car, and increased the parameter optimization range of the tail car. The drag reduction of the head car should focus on bogie sections, and drag reduction of the tail car was more sensitive to streamline length.

    参考文献
    [1]沈志云.高速列车的动态环境及其技术的根本特点[J].铁道学报,2006, 28(4): 1-5.Shen Zhiyun. Dynamic environment of high speed train and its distinguished technology[J]. Journal of The China Railway Society, 2006, 28(4): 1-5.
    [2]Raghunathan R S, Kim H D, Setoguchi T. Aerodynamics of high-speed railway train [J]. Progress in Aerospace Sciences, 2002, 38: 469-514.
    [3]Chris Baker. The flow around high speed train [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2010, 98: 277-298.
    [4]CHEN Yu, Yang Zhigang, Wang Weijie, Gao Zhe. Effects of length on aerodynamics of high speed train models[C]. Proceedings of the Sixth International Conference on Nonlinear Mechanics, Shanghai, China, 2013, 468-472.
    [5]田红旗. 列车空气动力学[M]. 中国铁道出版社,北京:2007
    [6]梁习锋,田红旗. 列车气动性能评估参数研究[J]. 中国铁道科学,2003,24(1),38-42.Liang Xifeng, Tian Hongqi. Research on evaluating parameters of train aerodynamic performance[J]. China Railway Science,2003,24(1),38-42.
    [7]田红旗,周丹,许平. 列车空气动力性能与流线型头部外形[J]. 中国铁道科学,2006,27(3),47-55.Tian Hongqi, Zhou Dan, Xu Ping. Aerodynamic performance and streamlined head shape of train[J]. China Railway Science,2006,27(3),47-55.
    [8]姚拴宝,郭迪龙,杨国伟. 基于GA-GRNN的高速列车头型三维优化设计[J]. 中国科学:技术科学,2012,42(11):1283-1294.Yao Shuanbao, Guo Dilong, Yang Guowei. Optimization and aerodynamic design of high speed train based on GA-GRNN[J]. China Science: Technology, 2012, 42(11): 1283-1294.
    [9]姚拴宝,郭迪龙,杨国伟,孙振旭等. 基于Kriging代理模型的高速列车头型多目标优化设计[J]. 中国科学:技术科学,2013,43(2):186-200.Yao Shuanbao, Guo Dilong, Yang Guowei, Sun Zhenxu. Multi-object optimization design of high speed train Based on Kriging Surrogate Model[J]. China Science: Technology, 2013, 43(2): 186-200.
    [10]陈大伟,姚拴宝,郭迪龙,杨国伟. 高速列车头型拓扑结构对气动力的作用规律研究[J]. 铁道学报,2015,37(2):18-26.Chen Dawei, Yao Shuanbao, Guo Dilong, Yang Guowei. Study of influence laws between topology structure of high speed train head and aerodynamic force[J]. Journal of China Railway Society, 2015, 37(2):18-26.
    [11]Shih T. H., Liou W. W., Shabbir A., et al. A new k-e eddy viscosity model for high Reynolds number turbulent flow-model development and validation[J]. Computers Fluids, 1995, 24(3): 227-238.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈羽,杨志刚,高喆,单希壮.底部结构对高速列车流场及气动优化规律的影响[J].同济大学学报(自然科学版),2016,44(6):0930~0936

复制
分享
文章指标
  • 点击次数:2132
  • 下载次数: 1120
  • HTML阅读次数: 65
  • 引用次数: 0
历史
  • 收稿日期:2015-05-31
  • 最后修改日期:2016-04-24
  • 录用日期:2016-04-11
  • 在线发布日期: 2016-07-08
文章二维码