支持向量机的刀具磨损状态监测
CSTR:
作者:
作者单位:

同济大学

中图分类号:

TP206.3

基金项目:

国家自然科学基金(71471139),国家国际科技合作专项资助(2012DFG72210),上海市科委基础研究重点项目(12JC1408700),浙江省自然科学基金(Y14E050085)


Tool Wear Condition Monitoring based on Principal Component Analysis and CSupport Vector Machine
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [17]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为了监测刀具磨损状态,建立了一个基于功率传感器的刀具磨损状态监测系统.提出了一种基于主成分分析(PCA)与C支持向量机(CSVM)相结合的刀具磨损状态监测模型.通过功率传感器采集切削过程中的电流和功率信号,采用PCA对采集的参数进行特征提取,选择对刀具磨损状态影响最大的主成分作为CSVM的输入样本,实现对刀具磨损状态的准确识别.通过数控车床切削实验表明,即使在较少的样本条件下,该方法仍然有效,并与反向传播(BP)神经网络进行了性能比较.

    Abstract:

    In order to monitor tool wear condition(TWC), the powersensorbased monitoring system on the state of machining tool wear was designed. The monitoring model of TWC was proposed based on principal component analysis(PCA)and Csupport vector machine(CSVM). Current and power signals were obtained from power sensor during cutting process. After that, the features of these signals were extracted using PCA. The principal components,mainly affecting TWC, were chosen as the input samples of CSVM to carry out monitoring the tool condition with accuracy. The results of computerized numerical control(CNC) turning machine tool show that the model is effective even in the case of a small samples. Moreover, a comparison about the monitoring and prognostics capability between the presented method and back propagation(BP)neural network has been made.

    参考文献
    [1] 朱红波,梅卫江.刀具磨损识别方法的分析与研究[J].装备制造技术,2012,(2):22-23.ZHU Hong-bo,MEI Wei-jiang.Analysis and Research of Tool Wear Identification Methods[J].Equipment Manufacting Technology,2012,(2):22-23.
    [2] 黄遂,陈洪涛,傅攀,甘建水..数控车削加工过程的刀具磨损动态监测[J].机械设计与制造,2010(2):191-192.HUANG Sui,CHEN Hong-tao,FU Pan,GAN Jian-shui.Dynamic tool wear monitoring in CNC turning[J].Machinery Design Manufacture,2010(2):191-192.
    [3] 陈静,王武,毛林.基于差分进化小波神经网络的刀具磨损状态识别[J].机械设计与制造,2012(7):176-178.CHEN Jing,WANG Wu,MAO Lin.State Recognition of Tool Wear Based on Differential Evolution Wavelet Neural Networks[J].Machinery Design Manufacture,2012(7):176-178.
    [4] 张锴锋,袁惠群,聂鹏.基于广义分形维数的刀具磨损状态监测[J].振动与冲击,2014,1(33):164-167.ZHANG Kai-feng,YUAN Hui-qun,NIE Peng.Tool wear condition monitoring based on generalized fractal dimensions[J].Journal of Vibration and shock,2014,1(33):164-167.
    [5] 官金,李国富,陈志刚.基于工作电流信号的车床刀具故障分析[J].宁波大学学报:理工版,2013,(1):113-116.GUAN Jin,LI Guo-fu,CHEN Zhi-gang.Current Signal Based Failure Analysis on Lathe Tool Fault[J].Journal of Ning Bo University(Natural Science and Engineering Edition),2013,(1):113-116
    [6] Bhattacharyya, P, Sengupta, D, Mukhopadhyay, S, Chattopadhyay, Online tool condition monitoring in face milling using current and power signals[J]. International Journal of Production Research .2008,46:1187-1201.
    [7] Ying Qiu,Feng-yun XIE.Tool wear monitoring based on wavelet packet coefficient and hidden Markov model[J].Hydromechatronics Engineering,2014,42:40-44.
    [8] 关山.基于奇异分解与最小二乘支持向量机的刀具磨损识别方法研究[J].东北电力大学学报,2013,(3):5-9.GUAN Shan.Study on Identification Method of Tool Wear Based on Singular Value Decomposition and Least Squares Support Vector Machine[J].Journal of Northeast Dianli University,2013,(3):5-9.
    [9] M Elangovan, S B Devasenapati, N R Sakthivel et al., Evaluation of expert system for condition monitoring of a single point cutting tool using principle component analysis and decision tree algorithm. Expert Systems with Application. 2011, 38:4450-4459.
    [10] Arnaz Malhi, Robert X Gao. PCA-Based feature selection scheme for machine defect classification. IEEE Trans. Instrum. Meas. 2004, 53(6):1517-1525
    [11] 关山.在线金属切削刀具磨损状态监测研究的回顾与展望III:模式识别方法[J].机床与液压,2012,40(3):148-153.GUAN Shan,NIE Peng.The review and perspective of the research of on-line and indirect metal cutting tool condition monitoringⅢ:pattern recognition methods[J]. Machine Tool Hydraulics.2012.40(3):148-153.
    [12] 刘华金.基于神经网络的数控机床刀具磨损预测模型研究[J].长江大学学报:自然科学版,2011,8(6):118-120.LIU Hua-jin.Research of CNC Machine Tool Wear Prediction Based on Matlab Simulink Neural Network[J].Journal of Yangtze University(Nat Sci Edit),2011,8(6):118-120.
    [13] Wang P, Meng Q, Zhao J, et al. Prediction of machine tool condition using support vector machine[C]. Journal of Physics: Conference Series. IOP Publishing, 2011, 305(1): 012113.
    [14] Salem S B, Bacha K, Chaari A. Support vector machine based decision for mechanical fault condition monitoring in induction motor using an advanced Hilbert-Park transform[J]. ISA transactions, 2012, 51(5): 566-572.
    [15] Kaya B, Oysu C, Ertunc H M, et al. A support vector machine-based online tool condition monitoring for milling using sensor fusion and a genetic algorithm[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226(11): 1808-1818.
    [16] Brereton,RG, Lloyd,GR.Support Vector Machine for classification and regression[J].ANALYST,2010,2(135):230-267
    [17] Chang C, Lin C. LIBSVM: A library for support vector machines. Software available at http://www. csie. ntu. edu. tw/cjlin/libsvm[J]. 2001.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

谢楠,马飞,段明雷,李爱平.支持向量机的刀具磨损状态监测[J].同济大学学报(自然科学版),2016,44(3):0434~0439

复制
分享
文章指标
  • 点击次数:1927
  • 下载次数: 1338
  • HTML阅读次数: 57
  • 引用次数: 0
历史
  • 收稿日期:2015-06-05
  • 最后修改日期:2015-12-07
  • 录用日期:2015-08-23
  • 在线发布日期: 2016-03-24
文章二维码