A computational fluid dynamics (CFD) simulation was performed on a brake disc of an SUV during the repetitive braking and cooling process. The temperature rising and drop procedure were numerically investigated compared with the climatic wind tunnel (CWT) test, and the brake cooling characteristics was specifically analyzed based on the heat transfer theory. The results show that the CFD simulation and the experiments are in good agreement. The convection heat transfer acts as a key factor for the cooling performance of the brake. The temperature drop for brake disc exhibits an exponential function of the cooling time, while the cooling coefficient shows a power law increase with the oncoming velocity of the vehicle.