Abstract:Based on the energy dissipation modes and the ideal folding mechanism presented by Wierzbicki and Abramowicz, a modified energy balance equation was developed for the square tube with strengthened ridgelines subjected to quasistatic axial crushing by introducing a yield strength ratio between ridgeline and plate. Then a theoretical prediction formula of mean crushing force was also derived. CAE (Computer Aided Engineering) numerical simulation completely reproduced the plastic deformation process of a new folding element of square tube with strengthened ridgelines during stable crushing stage. Comparisons between simulation results and theoretical solutions show that the theoretical formula can correctly predict the mean crushing force for square tube with strengthened ridgelines subjected to quasistatic axial crushing, and the max deviation is lower than 4.3%. Secondly, for a specific square tube whose length, width and thickness of cross section is 56mm, 56mm and 1.0mm respectively, four strengthened ridgelines which only occupy 9.09% of perimeter of the cross section can increase its mean crushing force by 53.8%.