棱线强化薄壁方管轴向压溃力学特性
CSTR:
作者:
作者单位:

同济大学,同济大学,江西省科学院,江西省科学院

中图分类号:

U465.11

基金项目:

国八六三“b高技术研究发展计划 (2012AA111302); 江西省交通厅重点工程项目(2015C0008).


Mechanical Properties of Thinwalled Square Tube with Strengthened Ridgelines Subjected to Axial Crushing
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    基于Wierzbicki和Abramowicz提出的方管理想化折叠机构和能量耗散模式,引入棱线与平板的屈服强度比,修正了棱线强化薄壁方管在准静态轴向压溃作用下的能量平衡方程,并推导出了平均压溃力理论预测公式.CAE(computer aided engineering)数值仿真完整再现了稳定压溃阶段棱线强化方管形成一个新折叠单元的塑性变形过程.仿真与理论结果对照表明,理论预测公式可以较准确地预测棱线强化薄壁方管准静态轴向压溃过程的平均压溃力,且最大偏差不超过4.3%;其次,对于截面长、宽、高分别为56, 56,1.0 mm的方管,仅占整个截面周长9.09%的4根强化棱线可使其平均压溃力提升53.8%.

    Abstract:

    Based on the energy dissipation modes and the ideal folding mechanism presented by Wierzbicki and Abramowicz, a modified energy balance equation was developed for the square tube with strengthened ridgelines subjected to quasistatic axial crushing by introducing a yield strength ratio between ridgeline and plate. Then a theoretical prediction formula of mean crushing force was also derived. CAE (Computer Aided Engineering) numerical simulation completely reproduced the plastic deformation process of a new folding element of square tube with strengthened ridgelines during stable crushing stage. Comparisons between simulation results and theoretical solutions show that the theoretical formula can correctly predict the mean crushing force for square tube with strengthened ridgelines subjected to quasistatic axial crushing, and the max deviation is lower than 4.3%. Secondly, for a specific square tube whose length, width and thickness of cross section is 56mm, 56mm and 1.0mm respectively, four strengthened ridgelines which only occupy 9.09% of perimeter of the cross section can increase its mean crushing force by 53.8%.

    参考文献
    [1] 吴晓杰, 崔振山. 压弯联合作用下薄壁梁轴向压溃的条件[J]. 汽车工程,2014,36(8): 963-967.Wu X.J. and Cui Z.S. The conditions for axial collapse of thin-walled columns under the coaction of axial com-pression and bending moment[J]. Automobile Engineering, 36(8): 963-967.
    [2] Aya, N. and Takahashi, K. Energy absorption characteristics of vehicle body structures[C]. Transactions of theSociety of Automotive Engineers of Japan, 1974, No.7: 65-74.
    [3] Calladine, C.R. Theory of Shell Structure[M]. Cambridge University Press, 1983.
    [4] Reid, S. R., Reddy, T. Y. and Gray, M. D. Static and dynamic axial crushing of foam-filled sheet metal tubes[J].International Journal of Mechanical Sciences, 1986, 28: 295-322.
    [5] Meng,Q., Al-Hassani, S. T. S. and Soden, P. D. Axial crushing of square tubes[J]. International Journal of Me-chanical Sciences, 1983, 25 (9/10): 747-773.
    [6] Wierzbicki, T. and Abramowicz, W. On the crushing mechanics of thin-walled structures[J]. Journal of AppliedMechanics, 1983, 50: 727-734.
    [7] Abramowicz, W. and Jones, N. Dynamic progressive buckling of circular and square tubes. International Journalof Impact Engineering, 1986, 4(4): 243-270.
    [8] 张怡, 兰凤崇. 单胞及多胞铝合金薄壁梁吸能特性研究[J]. 机械设计与制造, 2014, (12): 209-211.Zhang, Y. and Lan, F.C. A Study on the energy absorption characteristic of unicellular and multi cell aluminumalloy thin-walled columns[J]. Machinery Design Manufacture, 2014, (12): 209-211.
    [9] 袁潘, 杨智春. 复合材料/铝复合管轴向准静态及冲击压溃的吸能特性[J]. 振动与冲击, 2010, 29(8): 209-213.Yuan, P., and Yang, Z.C. Numerical study on energy absorption of aluminum-composite hybrid tubes under axi-al quasi-static and impact crushing[J]. Journal of Vibration and Shock, 2010, 29(8): 209-213.
    [10]漆维, 张维刚, 陈立娜, 等. 基于新型梁单元模型的薄壁弯梁耐撞性优化[J]. 中国机械工程, 2014, 25(7):989-993.Qi, W. Zhang, W.G., Chen, L.N., etc. Research on crashworthiness optimal design of thin-walled curved beambased on new type beam element model[J]. China Mechanical Engineering, 2014, 25(7): 989-993.
    [11]唐治, 潘一山, 李祈, 等. 矿用防冲方形折纹薄壁构件吸能特性数值分析[J]. 振动与冲击, 2014, 33(23):87-91.Tang, Z., Pan, Y.S. Li, Q., etc. Numerical analysis of energy-absorption properties of a thin-walled componentwith square folds for rock burst prevention in mine[J]. Journal of Vibration and Shock, 2014, 33(23): 87-91.
    [12]Ji, M., Abiko, T. and Okamura, T. Compressive and bending collapse of box structure with different strength inridgeline (in Japanese) [C]. Transactions of Society of Automotive Engineers of Japan, 2015, 46(3): 645-652.
    [13]余同希, [澳]卢国兴, 华云龙(译). 材料与结构的能量吸收[M]. 北京:化学工业出版社, 2006.Yu T. X. and Lv G.X., Translated by Hua Y. L. Energy absorption of structures and materials[M]. Beijing: Che-mical Industry Press, 2006.
    [14]桂良进,范子杰,王青春. 泡沫填充圆管的动态轴向压缩吸能特性[J]. 清华大学学报(自然科学版), 2004,44(5): 709-712.Gui L.J., Fan Z.J. and Wang Q.C. Energy-absorption properties of foam-filled circular tubes subjected to dyna-mic axial crushing[J]. J Tsinghua Univ(Sci Tech), 2004, 44(5): 709-712.
    [15]王青春,范子杰. 利用Ls-Dyna计算结构准静态压溃的改进方法[J].力学与实践, 2003, 25(3): 20-23.Wang, Q.C. and Fan Z.J. Improvement in analysis of quasi-static collapse with LS-DYNA[J]. Mechanics in En-gineering, 2003, 25(3): 20-23.
    引证文献
引用本文

郑玉卿,朱西产,胡强,陈志宝.棱线强化薄壁方管轴向压溃力学特性[J].同济大学学报(自然科学版),2016,44(6):0949~0954

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-07-09
  • 最后修改日期:2016-04-09
  • 录用日期:2015-12-18
  • 在线发布日期: 2016-07-08
文章二维码