基于粒子群-支持向量机的时间序列分类诊断模型
CSTR:
作者:
作者单位:

上海财经大学,上海财经大学,同济大学,复旦大学

中图分类号:

TP391

基金项目:

国家自然科学基金资助项目(71171126, 61170095); 教育部高等学校博士学科点专项科研基金(20130078110001); 上海市科学技术委员会2016年度“科技创新行动计划”资助项目(16511104704);同济大学青年优秀人才培养计划(1508-219-040)


Time Series Classification Diagnosis Model based on Partical Swarm Optimization and Support Vector Machine
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    构建一种基于粒子群算法支持向量机(PSOSVM)的磁共振功能成像(fMRI)时间序列分类诊断模型,通过针对脑区多维时间序列数据的深层次分析实现病症患者和健康者的准确判断与区分,为面向fMRI时间序列数据的病症诊断和预测提供有效科学依据.该方法在以下4个方面不同于其他已有相关研究工作:(1) 构建基于自回归模型的脑区多维时间序列数据特征表示;(2) 构建基于支持向量机模型的脑区多维时间序列数据分类机制;(3) 构建基于粒子群算法的分类学习参数寻优策略;(4) 建立融合上述特征表示、优化分类与参数优选模式的fMRI时间序列数据分类诊断模型.通过以精神抑郁症作为实证分析的具体案例,所提出分类诊断模型已取得良好实验效果,展示出其有效性与合理性.

    Abstract:

    This paper presents a fMRI timeseries classification diagnosis model based on particle swarm optimizationsupport vector machine (PSOSVM), which achieves more accurate judgments and distinctions between patients and healthy individuals by deeply analyzing multidimensional timeseries data of brain regions. This approach is significantly different from the other existing related research work in four aspects as follows: Constructing the feature representation for multidimensional timeseries data of brain regions based on the autoregressive (AR) model; Constructing the classification scheme for multidimensional timeseries of brain regions based on the support vector machine (SVM) model; Constructing the parameter optimization strategy for the classification learning based on the particle swarm optimization (PSO) algorithm; Constructing the classification diagnosis framework for fMRI timeseries data by integrating the above feature representation, optimized classification and parameter optimization patterns. With the mental depression disorder (MDD) as a specific case of empirical analysis, our classification diagnosis model has obtained very positive numerical computation results.

    参考文献
    [1]Banerjee T.P., Das S. Multi-sensor data fusion using support vector machine for motor fault detection [J]. Information Sciences, 2012, 217: 96-107.
    [2]Calhoun, V.D., et al. Temporal lobe and “default” hemodynamic brain modes discriminate between schizophrenia and bipolar disorder. Hum Brain Mapp, 2008, 29(11): 1265-1275.
    [3]Chupin M., Gerardin E., Cuingnet R., et al. Fully automatic hippocampus segmentation and classification in Alzheimer’s disease and mild cognitive impairment applied on data from ADNI [J]. Hippocampus, 2009, 19(6): 579-587.
    [4]Costafreda S.G., Chu C., Ashburaer J., et al. Prognostic and diagnostic potential of the structural neuroanatomy of depression [J]. PLoS One, 2009, 4(7).
    [5]Davatzikos C., et al, Whole-brain morphometric study of schizophrenia revealing a spatially complex set of focal abnormalities. Arch Gen Psychiatry, 2005, 62(11): 1218-1227.
    [6]de Moraes R.M., dos Santos Machado L. Online Assessment in Medical Simulators Based on Virtual Reality Using Fuzzy Gaussian Naive Bayes[J]. Multiple-Valued Logic and Soft Computing, 2012,18(5-6): 479-492.
    [7]Feis D.L., et al. Decoding gender dimorphism of the human brain using multimodal anatomical and diffusion MRI data. Neuroimage, 2013, 70: 250-257.
    [8]Fu C.H., Mourao-Miranda J., Costafreda S.G., et al. Pattern classification of sad facial processing: toward the development of neurobiological markers in depression [J]. Biological psychiatry, 2008, 63(7).
    [9]Gong Q., Wu Q., Scarpazza C., et al. Prognostic prediction of therapeutic response in depression using high-field MR imaging [J]. Neuroimage, 2011, 55(4): 1497-1503.
    [10]Guo H., Cao X.H., Liu Z.F., et al. Machine learning classifier using abnormal brain network topological metrics in major depressive disorder [J]. Neuroreport, 2012, 23(17): 1006-1011.
    [11]Kamitani Y., Tong F. Decoding the visual and subjective contents of the human brain [J]. Nature Neuroscience, 2005, 8: 679-685.
    [12]Kloppel S., et al. Automatic classification of MR scans in Alzheimer's disease. Brain, 2008. 131(3): 681-689.
    [13]Li Y., Wang Y., Wu G.,et al. Discriminant analysis of longitudina1 cortical thickness changes in Ahheimer’S diseaseusing dynamic and network features [J]. Neurobiology of Aging, 2012, 33(2).
    [14]Mueller S.G., et al. A two-level multimodality imaging Bayesian network approach for classification of partial epilepsy: preliminary data. Neuroimage, 2013, 71: 224-232.
    [15]Norman K.A., Polyn S.M., Detre G.J., et al. Beyond mind-reading: Multi-voxel pattern analysis of fMRI data [J]. Trends in Cognitive Sciences. 2006, 10(9): 424-430.
    [16]Park H.S., Cho S.B. Evolutionary attribute ordering in Bayesian networks for predicting the metabolic syndrome [J]. Expert Systems with Applications, 2012, 39(4): 4240-4249.
    [17]Pereira F., Mitchell T., Botvinick M. Machine learning classifiers and fMPJ: a tutorial overview [J]. Neuroimage, 2009, 45(1): 199-209.
    [18]Santos J.E, Li D. Temporal Bayesian Knowledge Bases-Reasoning about uncertainty with temporal constraints [J]. Expert Systems with Applications, 2012, 39(17): 12905-12917.
    [19]Wee C.Y., Yap P.T., Zhang D.Q., et al. Identification of MCI individuals using structural and functional connectivity networks [J]. NeuroImage, 2012, 59(3): 2045-2056.
    [20]Xie S.Y., Guo R., Li N.F., et al. Brain fMRI processing and classification based on combination of PCA and SVM [J]. IJCNN’09, 2009, 3384-3389.
    [21]蒋芸, 李战怀. 基于改进的SVM分类器的医学图像分类新方法 [J]. 计算机应用研究, 2008, 25(1): 53-55.Jiang Yu, Li Zhanhuai. New medical image classify approach based on improved SVM classifier. Application Research of Computers, 2008, 25(1): 53-55.
    [22]李传明, 王健, 桂莉 等. AD和MCI病人前额叶注意功能区fMRI检测 [J]. 青岛大学医学院学报, 2009, 45(4): 331-334.Li Chuanming, Wang Jian, Gui Li, et al. A bold-fMRI study of prefrontal cortex in Alzheimer disease, mild cognitive impairment and normal control subjects. Acta Academiae Medicinae Qingdao Uinversitatis, 2009, 45(4): 331-334.
    [23]吕卓, 谢松云, 赵金 等. 基于SVM及其改进算法的fMRI图像分类性能研究 [J]. 电子设计工程, 2011, 19(16) : 24-27.Lv Zhuo, Xie Songyun, Zhao Jin, et al. Research on performance of fMRI image classification based on SVM and its improved algorithm. Electronic Design Engineering, 2011, 19(16) : 24-27.
    [24]相洁, 陈俊杰. 基于SVM的fMRI数据分类: 一种解码思维的方法 [J]. 计算机研究与发展, 2010, 47(2): 286-291.Xiang Jie, Chen Junjie. SVM based fMRI data classification: an approach to decode mental state. Journal of Computer Research and Development, 2010, 47(2): 286-291.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张涛,张明辉,李清伟,张玥杰.基于粒子群-支持向量机的时间序列分类诊断模型[J].同济大学学报(自然科学版),2016,44(9):1450~1457

复制
分享
文章指标
  • 点击次数:1631
  • 下载次数: 931
  • HTML阅读次数: 50
  • 引用次数: 0
历史
  • 收稿日期:2015-07-12
  • 最后修改日期:2016-07-05
  • 录用日期:2016-06-20
  • 在线发布日期: 2016-10-10
文章二维码