Abstract:Based on field investigation and experimental data, extended finite element method was introduced to establish uniform stress model and non uniform stress model under adverse conditions. Horizontal, vertical micro cracks, single and multiple cracks were set up to study the crack development process of the fastener screw spike. The result shows that due to abrupt size change in the screw spike combining site of the head and screw, there is large stress concentration, easily generates micro cracks and then lateral extends, eventually breakdown under longterm train load. Simulation resultswere in conformity with actual fastener screw spike fracture form, so the extended finite element method is very suitable for fastener spike fracture process analysis. In addition, in order to avoid and reduce the screw spike rupture occurring, 13 kinds of working condition were studied about fastener screw spike shoulder transition arc setting. The result shows that the ideal arc radius is 1.6 mm for T30×155 type fastener screw spike, and the maximum stress will be reduced by 40% relative to without transition arc.