大断面深埋高水压盾构隧道实测内力反算与分析
CSTR:
作者:
作者单位:

同济大学 道路与交通工程教育部重点实验室,同济大学 道路与交通工程教育部重点实验室,同济大学 道路与交通工程教育部重点实验室,同济大学 道路与交通工程教育部重点实验室,同济大学 道路与交通工程教育部重点实验室

中图分类号:

TU921

基金项目:

国家自然科学基金资助项目(No. 51478353)。


Reverse Calculation and Analysis of Measured Internal Force of Deeply Buried Shield Tunnels with Large Crosssection Under High Water Pressure Conditions
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    结合南京地铁3号线大直径盾构隧道工程,对隧道管片钢筋应变进行了现场测试,基于既有的管片内力反算方法,考虑混凝土非线性性质及管片接头,提出了适用于深埋高水压盾构隧道的内力改进算法,并对改进算法反算内力与结构设计计算内力进行了对比分析.结果表明:改进算法更能反映管片的实际受力状态,更适用于荷载模式复杂且接头传力机制多变的大断面深埋高水压盾构隧道;采用设计方法计算的深埋高水压盾构隧道管片及接头内力与改进算法反算内力的分布规律基本一致,但在量值上具有一定的差异;采用设计方法计算的管片及接头轴力为改进算法反算轴力的1/2左右,反算的管片弯矩在拱底位置与惯用法计算弯矩接近,在拱腰及拱顶位置与梁弹簧法更为接近,反算的接头弯矩大于梁弹簧模型计算接头弯矩.研究成果可为大直径深埋盾构隧道设计提供参考.

    Abstract:

    A field monitoring program was performed to measure the steel strain in segments of a shield tunnel deeply buried with high pore water pressure of Nanjing Metro Line 3 project. Concerning the nonlinear properties of concrete and segment joint of tunnel, an improved algorithm was proposed to compute the internal forces of deeply buried shield tunnels under high water pressures based on three existing reverse calculation methods, and the results were compared to the ones computed in structural design. The results show that the improved algorithm can reflect the actual stress state of segments, especially the lining of shield tunnels deeply buried with high pore pressure; the distribution of internal forces calculated in design is almost equal to the one computed by the improved algorithm, but there are some quantitative discrepancies; the axial forces of segments and joints calculated in structural design are approximately half of the backcalculation results; the bending moments of segments calculated by the proposed algorithm are close to the results of the modified routine method at the bottom of the tunnel while approximate the results of the beamspring model at the roof and haunch of the tunnel, and the bending moments of segment joints are greater than the results of the beamspring model. The insights provided from this study can contribute to the improvement of largesection shield lining design.

    参考文献
    [1]何川, 曾东洋. 砂性地层中地铁盾构隧道管片结构受力特征研究[J]. 岩土力学, 2007, 05: 909-914.HE Chuan, ZENG Dong-yang. Research on mechanical characteristics of metro shield tunnel segment in sandy strata[J]. Rock and Soil Mechanics, 2007, 05: 909-914.
    [2]廖少明, 门燕青, 张迪, 等. 钱江隧道管片拼装过程中的力学行为实测分析[J]. 岩土工程学报, 2015, 01: 156-164.LIAO Shao-ming, MEN Yan-qing, ZHANG Di, et al. Field tests on mechanical behaviors during assembly of segmental linings of Qianjiang tunnel[J]. Chinese Journal of Geotechnical Engineering, 2015, 01: 156-164.
    [3]周济民, 何川, 方勇, 等. 黄土地层盾构隧道受力监测与荷载作用模式的反演分析[J]. 岩土力学, 2011, 01: 165-171.ZHOU Ji-min, HE Chuan, FANG Yong, et al. Mechanical property testing and back analysis of load models of metro shield tunnel lining in loess strata[J]. Rock and Soil Mechanics, 2011, 01: 165-171.
    [4]李 雪, 周顺华, 宫全美, 等. 大断面深埋高水压地铁盾构隧道周边土压力作用模式评价[J]. 岩土力学, 2015, 36(5): 1415-1420.LI Xue, ZHOU Shun-hua, GONG Quan-mei, et al. Evaluation of earth pressure around a deeply buried metro shield tunnel with a large cross-section under high water pressure conditions[J]. Rock and Soil Mechanics, 2015, 36(5): 1415-1420.
    [5]李 雪, 周顺华, 王培鑫, 等. 盾构隧道实测土压力分布规律及影响因素研究[J]. 岩土力学, 2014, 35(S2): 453-459.LI Xue, ZHOU Shun-hua, WANG Pei-xin, et al. Study of distribution law of earth pressure acting on shield tunnel lining based on in-situ data[J]. Rock and Soil Mechanics, 2014, 35(Supp.2): 453-459.
    [6]唐孟雄, 陈如桂, 陈伟. 广州地铁盾构隧道施工中管片受力监测与分析[J]. 土木工程学报, 2009, 03: 118-124.TANG Meng-xiong, CHEN Ru-gui, CHEN Wei. Stress monitoring and internal force analysis of Guangzhou metro shield tunnel segment during construction[J]. China civil engineering journal, 2009, 03: 118-124.
    [7]吴世明, 王湛, 王立忠. 大断面过江隧道运营期受力变形健康监测分析[J]. 浙江大学学报(工学版), 2013, 04: 595-601 608.WU Shi-ming, WANG Zhan, WANG Li-zhong. Monitoring and analysis of the force and deformation of large section crossing-river tunnel during operation period[J]. Journal of Zhejiang University(Engineering Science), 2013, 47(4): 595-601 608.
    [8]Li X, Tian Z, Yang Z, et al. Observed Ground Pressures and Internal Forces of the Shanghai Yangtze River Tunnel[C]//Tunneling and Underground Construction. [S.l.]: [s.n.], 2014: 984-992.
    [9]梁禹, 苏文辉, 方理刚, 等. 大直径江底盾构隧道衬砌结构受力现场测试与分析[J]. 隧道建设, 2014, 07: 637-641.LIANG Yu, SU Wen-hui, FANG Li-gang, et al. Field test and analysis on stress of lining of large-diameter river-crossing shield tunnel[J]. Tunnel Construction, 2014, 34(7): 637-641.
    [10]张君禄, 段峰虎, 廖文来, 等. 湛江湾跨海盾构隧道管片现场监测试验研究[J]. 岩石力学与工程学报, 2014, S1: 2878-2884.ZHANG Jun-lu, DUAN Feng-hu, LIAO Wen-lai, et al. Field monitoring experimental study of sea-crossing shield tunnel segment in Zhanjiang Bay[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Supp.1): 2878-2884.
    [11]张厚美. 地铁盾构工程设计与施工过程的若干问题研究[D]. 上海交通大学, 2004.
    [12]钟小春. 盾构隧道管片土压力的研究[D]. 南京: 河海大学, 2005.
    [13]Bilotta E, Russo G. Internal Forces Arising in the Segmental Lining of an Earth Pressure Balance-Bored Tunnel[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(10): 1765-1780.
    [14]小泉.淳, 官林星. 盾构隧道管片设计[M]. 从容许应力设计法到极限状态设计法. 中国建筑工业出版社, 2012: 60-65.
    [15]周顺华, 崔之鉴. 城市轨道交通结构设计与施工[M]. 人民交通出版社. 2011: 142-151.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

周顺华,刘畅,李雪,金浩.大断面深埋高水压盾构隧道实测内力反算与分析[J].同济大学学报(自然科学版),2017,45(07):0970~0977

复制
分享
文章指标
  • 点击次数:4481
  • 下载次数: 1261
  • HTML阅读次数: 741
  • 引用次数: 0
历史
  • 收稿日期:2015-08-03
  • 最后修改日期:2017-05-15
  • 录用日期:2017-05-09
  • 在线发布日期: 2017-07-20
文章二维码