高强度Q460钢高温蠕变性能
CSTR:
作者:
作者单位:

重庆大学,重庆大学

中图分类号:

TU392

基金项目:

中央高校基本科研业务费(编号:CDJZR12200004),重庆市自然科学基金(编号:cstc2013jcyjA1041)


Creep Behavior in High Strength Q460 Steel
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为了研究高强度Q460钢的高温蠕变对钢结构抗火性能的影响,采用高温蠕变试验装置测试了高温下高强度Q460钢材在不同应力水平下的蠕变应变随时间的变化曲线.根据试验数据,在现有蠕变模型的基础上拟合了高强度Q460钢材的高温蠕变模型.在有限元结构分析中引入钢材高温材料力学性能和蠕变参数,分析了考虑高温蠕变后轴心受力Q460钢柱的抗火性能.研究表明,高强度Q460钢材在高温和应力作用下具有明显的蠕变变形,在同一温度和时间下,蠕变应变随应力水平的提高明显增加;考虑蠕变效应后,在标准(ISO834)的升温条件下,钢柱的耐火极限明显降低;在恒定温度下,钢柱的极限承载力随着时间的增加急剧降低,因而结构的抗火承载力设计需要考虑受火时间的影响.

    Abstract:

    In order to investigate the effect of creep in high strength Q460 steel on the fire resistance of structures, creeptime curves for high strength Q460 steel under various temperature and stress was tested by using creep testing setup. According to the test data, creep models for high strength Q460 steel were proposed based on current creep models. The fire resistance of axially compressed high strength Q460 steel column was analyzed by employing finite element modeling after taking material properties and creep at elevated temperatures into consideration. The study shows that the creep deformation under the action of temperature and stress in high strength Q460 steel is significant, and at the same temperature and time, the creep increase obviously with rise of stress. After considering the effect of creep, fire duration of steel column decrease seriously under the fire exposure to ISO834 standard temperature curve. At a certain temperature, there is a pronounced reduction in load bearing capacity of steel column with the increase of time for fire exposure. Therefore, in the design of load bearing capacity of steel column, the time lasting in fire should be taken into consideration.

    参考文献
    [1]屈立军, 李焕群, 王跃琴等. 国产钢结构用Q345(16Mn)钢在恒载升温条件下的应变-温度-应力材料模型[J]. 土木工程学报, 2008, 41(7): 41-47. (Qu Lijun, Li Huanqun, Wang Yueqin et al. Strain-temperature-stress material model of Q345 (16Mn) steel under elevated temperature and constant loading [J]. Journal of Civil Engineering, 2008, 41(7): 41-47.(in Chinese))
    [2]杨秀英, 赵金城. 不同路径对Q235钢材高温性能的影响[J]. 土木工程学报, 2010, 43(1): 29-34. (Yang Xiuying, Zhao Jincheng. The effect of multi-paths on mechanical properties of Q235 steel at elevated temperature [J]. Journal of Civil Engineering, 2010, 43(1): 29-34.(in Chinese))
    [3]陈伟, 叶继红. G550高强度冷成型钢高温力学性能瞬态试验研究[J]. 土木工程学报, 2012, 45(7): 56-64. (Chen Wei, Ye Jihong. Transient state experimental investigation of G550 high strength cold-formed steel material at elevated temperatures [J]. Journal of Civil Engineering, 2012, 45(7): 56-64.(in Chinese))
    [4]陈伟, 叶继红. Q345冷成型钢高温力学性能试验研究[J]. 建筑结构学报, 2012, 33(2): 41-49.(Chen Wei, Ye Jihong. Experimental investigation on mechanic behavior of Q345 cold-formed steel material at elevated temperatures [J]. Journal of Building Structures, 2012, 33(2): 41-49. (in Chinese) )
    [5]Wang W Y, Liu B, Kodur V K R. Effect of temperature on strength and elastic modulus of high strength steel. Journal of Materials in Civil Engineering, 2013,25(2):174-182.
    [6]Kodur V K .R, Dwaikat M. Response of steel beam-columns exposed to fire. Engineering Structures, 2009, 31(2):369–379.
    [7]Kodur V K R, Dwaikat M M S. Effect of high temperature creep on the fire response of restrained steel beams [J].Materials and Structures, 2010, 63:1327-1341.
    [8]Brnic J, Turkalj G, Canadija M, Lanc D. Creep behavior of high-strength low-alloy steel at elevated temperatures [J]. Material Science and Engineering A, 2009, 499:23-27.
    [9]Brnic J, Turkalj G, Canadija M, Lanc D. AISI 316Ti (1.4571) steel-mechanical, creep and fracture properties versus temperature. Journal of Constructional Steel Research, 2011, 67:1948-1952.
    [10]Schneider R, Lange J. Constitutive equations and empirical creep law of structural steel S460 at Elevated temperatures [J].Journal of Structural Fire Engineering, 2011, 2(3): 217-229.
    [11]Morovat M A, Lee J, Engelhardt M D, Taleff EM, Helwig TA, Segrest VA. Creep properties of ASTM A992 steel at elevated temperatures. Advanced Material Research, 2012, (446–449): 786–792.
    [12]Kodur V K R, Aziz E M. Effect of temperature on creep in ASTM A572 high-strength low-alloy steels. Material and Structures, 2014, 10.1617/s11527-014-0262-2.
    [13]张昊宇, 郑文忠. 高温下1770级φ~P5钢丝蠕变及应力松弛性能试验研究[J]. 土木工程学报, 2006, 39(8): 7-13. (Zhang Haoyu, Zheng Wenzhong. An experimental study on the creep and stress relaxation properties of 1770-φ~P5 prestressing steel wires at high temperatures [J]. Journal of Civil Engineering, 2006, 39 (8): 7-13. (in Chinese))
    [14]周焕廷,聂河斌,李国强等. 高温作用下1860级预应力钢绞线蠕变性能试验研究[J]. 建筑结构学报, 2014, 35(6): 123-129. (Zhou Huanting, Nie Hebin, Li Guoqiang et al. Experimental research on creep properties of prestressed steel strand in 1860 MPa at high temperature [J]. Journal of Building Structures, 2014, 35(6): 123-129. (in Chinese) )
    [15]GB/T2975-1998. 钢及钢产品力学性能试验取样位置及试样制备[S]. 北京:中国标准出版社, 1998. (GB/T2975-1998. Steel and steel products--Location and preparation of test pieces for mechanical testing [S]. Beijing: Standards Press of China, 1998)
    [16]GBT 4338-2006.金属材料高温拉伸试验方法[S]. 北京:中国标准出版社, 2006. (GBT 4338-2006. Metallic materials―Tensile testing at elevated temperature [S]. Beijing: Standards Press of China, 2006)
    [17]Dorn J E. Some Fundamental Experiments on High Temperature Creep, Journal of the Mechanics and Physics of Solids, 1955, 3(2), 85-116.
    [18]Harmathy T Z. A Comprehensive Creep Model, Journal of Basic Engineering, Trans. ASME, 1967, 89(3), 496–502.
    [19]Fields B A, Fields R J. Elevated Temperature Deformation of Structural Steel, Report NISTIR 88-3899, NIST, Gaithersburg, MD, 1989.
    [20]Findley W N, Lai J S, Onaran K. Creep and Relaxation of Nonlinear Viscoelastic Materials. Dover Publications, New York, 1989.
    [21]Zienkiewicz O C, Cormeau I C. Visco-plasticity-plasticity and creep in elastic solids—a unified numerical solution approach. International Journal for Numerical Method in Engineering, 1974, 8:821–845.
    [22]Norton F.H. The creep of steel at high temperatures [M]. McGraw-Hill Inc., New York, 1929.
    [23]王彦博,李国强,陈素文等. Q460钢焊接H形柱轴心受压极限承载力试验研究[J].土木工程学报, 2012, 45(6): 58-64.(Wang Yanbo, Li Guoqiang, Chen Suwen et al. Experimental study on the ultimate beaing capacity of axially compressed high stregnth of H- secton columns [J].Journal of Civil Engineering, 2012, 45(6): 58-64.(in Chinese))
    [24]CECS200:2006.建筑钢结构防火技术规范[S].北京:中国计划出版社,2006.(CECS200:2006 Technical code for fire safety of steel structures in buildings. Beijing: China Planning Press,2006)
    [25]崔佳. 残余应力对焰切边焊接工形柱承载力影响的研究[D].重庆:重庆建筑工程学院.1983.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

王卫永,闫守海.高强度Q460钢高温蠕变性能[J].同济大学学报(自然科学版),2016,44(6):0830~0837

复制
分享
文章指标
  • 点击次数:2584
  • 下载次数: 1378
  • HTML阅读次数: 39
  • 引用次数: 0
历史
  • 收稿日期:2015-08-05
  • 最后修改日期:2016-04-11
  • 录用日期:2016-02-29
  • 在线发布日期: 2016-07-08
文章二维码