一种考虑温度影响的高效几何非线性梁柱单元
CSTR:
作者:
作者单位:

同济大学,同济大学

中图分类号:

TU311

基金项目:

中国国家自然科学基金(51120185001)资助,科技部国家重点实验室资助。


An Efficient Geometric Nonlinear BeamColumn Element Considering Temperature
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    在梁柱单元位移函数中引入了轴力的影响,将传统3次位移函数改进为4次位移函数,并推导得到了考虑温度影响的几何非线性梁柱单元.该单元的几何非线性刚度矩阵中完整考虑了单元位形变化对平衡方程的影响、温度变化对材性和单元应变的影响以及单元位形变化对几何方程的影响,进而可以考虑二阶效应、弓形效应.采用该单元编制了有限元程序,算例分析表明,该梁柱单元精度得到了显著改善,可以极大减少非线性有限元模型的单元数量,在分析火灾下梁的悬链线效应、火灾下杆系结构连续性倒塌等问题上具有显著优势.

    Abstract:

    Instead of traditional cubic Hermitian interpolation function, axial force is considered in element deformation in this paper, and a fourth order interpolation function is employed to form a new beamcolumn element considering thermal effect. Influence of element deformation on equilibrium equation and geometric equation, and influence of temperature on material properties and strain formulation are considered in new element, known as secondorder effect and bowing effect. A finite element program was written to verify the efficiency and accuracy of the new element against B23 in ABAQUS. It is concluded that the element number can be greatly reduced under the same accurate condition, and be superior in dealing with limit analysis, such as catenary effect of beam in fire and nonlinear progressive collapse analysis in fire.

    参考文献
    [1]李国强, 刘玉姝, 赵欣. 钢结构框架体系高等分析与系统可靠度设计[M]. 北京: 中国建筑工业出版社. 2006: 9-19.#$NLLi Guo-Qiang, Liu Yu-Shu, Zhao Xin. Advanced analysis and reliability design of steel frame system [M]. Beijing: China Architecture Building Press. 2006: 9-19. (in Chinese)
    [2]刘坚. 钢结构高等分析的二阶非弹性理论与应用[M]. 北京: 科学出版社. 2012: 78-81.#$NLLiu Jian. Second order inelastic theory and application for advanced analysis of steel structures [M]. Beijing: Science Press. 2012: 78-81. (in Chinese)
    [3]Oran C. Tangent stiffness in space frames [J]. Journal of the Structural Division, ASCE. 1973, Vol.99 (No.ST6): 987-1001.
    [4]Goto Y, Chen W F. On the computer-based design analysis for the flexibly jointed frames [J]. Journal of Constructional Steel Research. 1987, Vol.8: 203-231.
    [5]王勖成. 有限单元法[M]. 北京: 清华大学出版社. 2003: 306-322.#$NLWang Xu-Cheng. Finite element method [M]. Beijing: Tsinghua University, 2003: 306-322. (in Chinese)
    [6]Chan S L, Zhou Z H. Second-order elastic analysis of frames using single imperfect element per member [J]. Journal of Structural Engineering. 1995, Vol.121 (No.6): 939-945.
    [7]Al-Bermani F G A, Kitipornchai S. Nonlinear analysis of thin-walled structures using least element/member [J]. Journal of Structural Engineering. 1990, Vol.116 (No.1): 215-234.
    [8]So A K W, Chan S L. Buckling analysis of frames using 1 element/member [J]. Journal of Constructional Steel Research. 1991, Vol.20(No.4): 271-289.
    [9]Chan S L, Zhou Z H. Pointwise equilibrating polynomial element for nonlinear analysis of frames [J]. Journal of Structural Engineering. 1994, Vol. 120(6): 1703-1777.
    [10]Crisfield M A. A fast incremental/iterative solution procedure that handles ‘snap-through’ [J]. Computers Structures. 1981, Vol.13(No.1-3): 55-62.
    [11]Dassault Systèmes Simulia Corp. ABAQUS 6.11 theory manual [Z]. 2011: 3.5.1-1.
    [12]李国强,韩林海,楼国彪,蒋首超. 钢结构及钢-混凝土组合结构抗火设计[M]. 北京: 中国建筑工业出版社.2006: 105-107.#$NLLi Guo-Qiang, Han Lin-Hai, Lou Guo-Biao, Jiang Shou-Chao. Fire resist design of steel structures and steel-concrete composite structures [M]. Beijing: China Architecture Building Press. 2006: 105-107. (in Chinese)
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李国强,王震.一种考虑温度影响的高效几何非线性梁柱单元[J].同济大学学报(自然科学版),2016,44(6):0815~0821

复制
分享
文章指标
  • 点击次数:1623
  • 下载次数: 996
  • HTML阅读次数: 40
  • 引用次数: 0
历史
  • 收稿日期:2015-08-08
  • 最后修改日期:2016-04-11
  • 录用日期:2016-02-29
  • 在线发布日期: 2016-07-08
文章二维码