College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China; Key Laboratory of Embedded System and Service Computing of the Ministry of Education, Tongji University, Shanghai 201804, China 在期刊界中查找 在百度中查找 在本站中查找
College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China; Key Laboratory of Embedded System and Service Computing of the Ministry of Education, Tongji University, Shanghai 201804, China 在期刊界中查找 在百度中查找 在本站中查找
By introducing granular computing into concept lattice, and integrating similarity measure model and structure information of concept lattice, the paper proposes an expanded concept lattice model based on granular computing. It can help to expand intent and extent of classical concept, and also can effectively reduce the scale of concepts to some extent. The model is not only a useful attempt and exploration for the fusion of these two theories, but also an effective means of expanding the classical concept lattice.
[3]Li J H, Mei C L, Lv Y J. Incomplete decision contexts: approximate concept construction, rule acquisition and knowledge reduction [J]. International Journal of Approximate Reasoning, 2013, 54(1): 149-165.
[4]薛金蓉, 安秋生, 郑军. 概念格的内涵缩减与数据库推理依赖[J]. 计算机研究与发展, 2014, 51(1): 96-103.XUE Jinrong, AN Qiusheng, ZHENG Jun. Intent reduction of concept lattice and database inference dependence [J]. Journal of Computer Research and Development, 2014, 51(1): 96-103.
[5]杨丽, 徐扬. 基于逻辑合取的语言真值概念格合并算法[J]. 电子学报, 2013, 41(11): 2149-2155.YANG Li, XU Yang. Union algorithm of linguistic truth-valued concept lattice based on logical conjunction [J]. ACTA Electronica Sinica, 2013, 41(11): 2149-2155.
[6]智慧来, 智东杰, 刘宗田. 概念格合并原理与算法[J]. 电子学报, 2010, 38(2): 455-459. ZHI Huilai, ZHI Dongjie, LIU Zongtian. Theory and algorithm of concept lattice union [J]. ACTA Electronica Sinica, 2010, 38(2): 455-459.
[7]张磊, 张宏莉, 殷丽华, 等. 概念格的属性渐减原理与算法研究[J]. 计算机研究与发展, 2013, 50(2): 248-259.ZHANG Lei, ZHANG Hongli, YIN Lihua, et al. Theory and algorithms of attribute decrement for concept lattice [J]. 2013, 50(2): 248-259.
[8]谢志鹏, 刘宗田. 概念格的快速渐进式构造算法[J]. 计算机学报, 2002, 25(5): 490-496.XIE Zhipeng, LIU Zongtian. A fast incremental algorithm for building concept lattice [J]. Chinese Journal of Computers, 2002, 25(5): 490-496.
[9]刘宗田, 强宇, 周文, 等. 一种模糊概念格模型及其渐进式构造算法[J]. 计算机学报, 2007, 30(2): 184-188.LIU Zongtian, QIANG Yu, ZHOU Wen, et al. A fuzzy concept lattice model and its increment- al construction algorithm [J]. Chinese Journal Computers, 2007, 30(2): 184-188.
[10]Zhai Y H, Li D Y, Qu K S. Fuzzy decision implications [J]. Knowledge-Based Systems, 2013, 37: 230-236.
[11]Zhai Y H, Li D Y, Qu K S. Decision implication canonical basis: a logical perspective [J]. Journal of Computer and System Sciences, 2015, 81: 208–218.
[12]胡可云,陆玉昌,石纯一. 基于概念格的分类和关联规则的集成挖掘方[J]. 软件学报, 2000, 11(11): 1478-1484.HU Keyun, LU Yuchang, SHI Chunyi. An integrated mining approach for classification and association rule based on concept lattice [J]. Journal of Software, 2000, 11(11): 1478-1484.
[13]梁吉业, 王俊红. 基于概念格的规则产生集挖掘算法[J]. 计算机研究与发展, 2004, 41(8): 1339-1344.LIANG Jiye, WANG Junhong. An algorithm for extracting rule-generating sets based on concept lattice [J]. Journal of Computer Research and Development, 2004, 41(8): 1339-1344.
[14]马垣, 张学东, 迟呈英. 紧致依赖与内涵亏值[J]. 软件学报, 2011, 22(5): 962-972.MA Yuan, ZHANG Xuedong, CHI Chengying. Compact dependencies and intent waned values [J]. Journal of Software, 2011, 22(5): 962-972.
[15]Mi J S, Leung Y, Wu W Z. Approaches to attribute reduction in concept lattices induced by axialities [J]. Knowledge Based Systems, 2010, 23(6): 504-511.
[16]张文修, 魏玲, 祁建军. 概念格的属性约简理论与方法[J]. 中国科学: E辑, 2005, 35(6): 628-639.ZHANG Wenxiu, WEI Ling, QI Jianjun. Attribute reduction theory and approach to concept lattice [J]. Science in China: Series E Information Sciences, 2005, 35(6): 628-639.
[17]李冲, 曹吉鸣, 马腾. 基于形式概念分析的项目成员综合相似度计算[J]. 同济大学学报(自然科学版), 2014, 42(6): 983-988.LI Chong, CAO Jiming, MA Teng. Integrated similarity calculation of project members based on formal concept analysis [J]. Journal of Tongji University (Natural Science), 2014, 42(6): 983-988.
[18]李立峰, 张东晓. 概念格在二值命题逻辑命题集约简中的应用[J]. 电子学报, 2007, 35(8): 1538-1542.LI Lifeng, ZHANG Dongxiao. The application of concept lattice theory in the reduction of the proposition set in two-valued propositional logic [J]. ACTA Electronica Sinica, 2007, 35(8): 1538-1542.
[19]Shao M W, Liu M, Zhang W X. Set approximations in fuzzy formal concept analysis [J]. Fuzzy Sets and Systems, 2007, 158 (23): 2627-2640.
[20]Kang X P, Li D Y, Wang S G, et al. Formal concept analysis based on fuzzy granularity base for different granulations [J]. Fuzzy Sets and Systems, 2012, 203: 33-48.
[21]Wei L, Qi J J. Relation between concept lattice reduct and rough set reduct [J]. Knowledge- Based Systems, 2010, 23(8): 934-938.
[22]Kang X P, Li D Y, Wang S G, et al. Rough set model based on formal concept analysis [J]. Information Sciences, 2013, 222: 611-625.
[23]Chen J K,SLi J J,SLin Y J, et al. Relations of reduction between covering generalized rough sets andSconceptSlattices [J]. Information Sciences, 2015, 304: 16-27.
[24]仇国芳, 张志霞, 张炜. 基于粗糙集方法的概念格理论研究综述[J]. 模糊系统与数学, 2014, 28(1): 168-177.QIU Guofang, ZHANG Zhixia, ZHANG Wei. A survey for study on concept lattice theory via rough set [J]. Fuzzy Systems and Mathematics, 2014, 28(1): 168-177.
[25]Lai H L,Zhang D X.Concept lattices of fuzzy contexts: Formal concept analysis vs.rough set theory. International Journal of Approximate Reasoning, 2009, 50: 695-707.
[26]Wang L D, Liu X D. Concept analysis via rough set and AFS algebra [J]. Information Sciences, 2008, 178:4125-4137.
[27]Dias S M, Nogueira B M, Zarate L E. Adaptation of FCANN method to extract and represent comprehensible knowledge from neural networks. Studies in Computational Intelligence, 2008, 134:163-172.
[28]Jiang L, Deogun J. SPICE: A new frame work for data mining based on probability logic and formal concept analysis. Fundamenta Informaticae, 2007, 78: 467-485.
[29]仇国芳, 马建敏, 杨宏志, 等. 概念粒计算系统的数学模型[J]. 中国科学: E辑, 2009, 39 (12): 1239-1247.QIU Guofang, MA Jianmin, YANG Hongzhi, et al. Mathematical model of concept granule computing system [J]. Science in China: Series E Information Sciences, 2009, 39(12): 1239 -1247.
[30]Kang X P, Li D Y, Wang S G. Research on domain ontology in different granulations based on concept lattice [J]. Knowledge-Based Systems, 2012, 27: 152-161.
[31]Wu W Z, Leung Y, Mi J S. Granular computing and knowledge reduction in formal contexts [J]. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(10): 1461-1474.
[32]Burusco A, Fuentes-Gonzales R. Construction of the L-fuzzy concept lattice. Fuzzy Sets and Systems, 1998, 97:109-114.
[33]Yao Y Y. Concept lattices in rough set theory [C] // Proceedings of the 2004 IEEE Annual Meeting of the North American Fuzzy Information Processing Society (NAFIPS?04). Piscataway, NJ, USA: IEEE, 2004: 796-801.
[34]Sarmah A K, Hazarika S M, Sinha, S K.S FormalSconceptSanalysis: current trends and directions [J]. Artificial Intelligence Review, 2015,S44(1): 47-86.