新型随机重构微孔隙介质模型与扩散特性
CSTR:
作者:
作者单位:

同济大学,戴姆勒大中华区投资有限公司

中图分类号:

TM911.4;O647.33

基金项目:

国家自然科学基金资助(21506165);中央高校基本科研业务费专项资金资助(1700219139)。


Characterization and Diffusion in Reconstructed Gas Diffusion Layer Based on Stochastic Method
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出一种使用碳纸气体扩散层微孔隙结构的真实形态参数,构建三维微孔隙结构模型的算法.此方法通过扫描真实的扩散层结构获取结构的特性参数.通过确定三维微结构内纤维系统的中心坐标,循环构建N层纤维系统,达到需求的扩散层厚度,各层纤维系统由随机分布的重叠并相交的纤维结构构成;并将成功构建的模型转换为能够用于流体仿真的数据模型,对结构模型的渗透率进行了验证.结果表明,该方法生成的模型符合真实扩散层的渗透特性.最后,利用该模型对扩散层各项特性参数的变化关系进行了分析,结果可用于扩散层的结构优化设计,更大程度增强渗透传输特性.

    Abstract:

    This paper aims to build a 3D micro structure of carbon paper gas diffusion layer (GDL) based on morphological parameter of true materials. This method needs to acquire the basic morphological parameter first by scanning the true GDL structure. Then, by confirming the center coordinates of the whole 3D GDL structure, it constructs a layer of fiber structure each time through the loop and stops when reaching the true thickness. The fiber in each layer will be overlapping and intersecting. After finishing the reconstruction, it needs to be transferred to the binary image that is convenient to fluid modeling. This structure model is used to test the permeability, and the results obtained from the stochastic reconstruct method is very close to the results of the true image. From the case study, the permeability characteristic effect with the change of each structure parameter is given. These results will be used for the structure optimization and improvement of the diffusion of GDL structure.

    参考文献
    [1] 徐腊梅. 质子交换膜燃料电池模拟与优化[M]. 北京: 国防工业出版社, 2012.
    [2] 王晓丽,张华民,张建鲁,等. 质子交换膜燃料电池气体扩散层的研究进展[J]. 化学进展. 2006(04): 507-513.
    [3] Weber A Z, Borup R L, Darling R M, et al. A Critical Review of Modeling Transport Phenomena in Polymer-Electrolyte Fuel Cells[J]. Journal of The Electrochemical Society. 2014, 12(161): F1254-F1299.
    [4] Adler P M, Thovert J F, Bekri S, et al. Real porous media: local geometry and transports[Z]. Grenoble(FR): 200213.
    [5] Liang Z R, Fernandes C P, Magnani F S, et al. A reconstruction technique for three-dimensional porous media using image analysis and Fourier transforms[J]. Journal of Petroleum Science and Engineering. 1998, 21(3): 273-283.
    [6] Schladitz K, Peters S, Reinel-Bitzer D, et al. Design of acoustic trim based on geometric modeling and flow simulation for non-woven[J]. Computational Materials Science. 2006, 38(1): 56-66.
    [7] Schulz V P, Becker J, Wiegmann A, et al. Modeling of Two-Phase Behavior in the Gas Diffusion Medium of PEFCs via Full Morphology Approach[J]. Journal of The Electrochemical Society. 2007, 154(4): B419.
    [8] Zamel N, Li X, Shen J, et al. Estimating effective thermal conductivity in carbon paper diffusion media[J]. Chemical Engineering Science. 2010, 65(13): 3994-4006.
    [9] Zamel N, Li X, Becker J, et al. Effect of liquid water on transport properties of the gas diffusion layer of polymer electrolyte membrane fuel cells[J]. International Journal of Hydrogen Energy. 2011, 36(9): 5466-5478.
    [10] Daino M M, Kandlikar S G. 3D phase-differentiated GDL microstructure generation with binder and PTFE distributions[J]. International Journal of Hydrogen Energy. 2012, 37(6): 5180-5189.
    [11] Wang Y, Cho S, Thiedmann R, et al. Stochastic modeling and direct simulation of the diffusion media for polymer electrolyte fuel cells[J]. International Journal of Heat and Mass Transfer. 2010, 53(5-6): 1128-1138.
    [12] Froning D, Brinkmann J, Reimer U, et al. 3D analysis, modeling and simulation of transport processes in compressed fibrous microstructures, using the Lattice Boltzmann method[J]. Electrochimica Acta. 2013, 110: 325-334.
    [13] Thiedmann R, Hartnig C, Manke I, et al. Local Structural Characteristics of Pore Space in GDLs of PEM Fuel Cells Based on Geometric 3D Graphs[J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY. 2009, 156(11): B1339-B1347.
    [14] Thiedmann R, Fleischer F, Hartnig C, et al. Stochastic 3D modeling of the GDL structure in PEMFCs based on thin section detection[J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY. 2008, 155(4): B391-B399.
    [15] Gostick J T. Random pore network modeling of GDLs using Voronoi and Delaunay Tessellations[J]. ECS Transactions. 2011, 1(41): 125-130.
    [16] Thompson K E. Pore-Scale Modeling of Fluid Transport in Disordered Fibrous Materials[J]. AIChE Journal. 2002, 7(48): 1369-1389.
    [17] Ji Y, Luo G, Wang C. Pore-Level Liquid Water Transport Through Composite Diffusion Media of PEMFC[J]. Journal of The Electrochemical Society. 2010, 157(12): B1753.
    [18] Becker J, Flückiger R, Reum M, et al. Determination of Material Properties of Gas Diffusion Layers: Experiments and Simulations Using Phase Contrast Tomographic Microscopy[J]. Journal of The Electrochemical Society. 2009, 10(156): B1175-B1181.
    [19] Hao L, Cheng P. Lattice Boltzmann simulations of anisotropic permeabilities in carbon paper gas diffusion layers[J]. Journal of Power Sources. 2009, 186(1): 104-114.
    [20] Feser J P, Prasad A K, Advani S G. Experimental characterization of in-plane permeability of gas diffusion layersS[J]. Journal of Power Sources. 2006, 162(2): 1226-1231.
    [21] Tomadakis M M, Robertson T J. Viscous Permeability of Random Fiber Structures: Comparison of Electrical and Diffusional Estimates with Experimental and Analytical Results[J]. Journal of Composite Materials. 2005, 39(2): 163-188.
    [22] Johnson D L, Koplik J, Schwartz L M. New Pore-Size Parameter Characterizing Transport in Porous Media[J]. Physical Review Letters. 1986, 57(20): 2564-2567.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

高源,吴晓燕,孙严博.新型随机重构微孔隙介质模型与扩散特性[J].同济大学学报(自然科学版),2017,45(01):109~118

复制
分享
文章指标
  • 点击次数:1724
  • 下载次数: 1350
  • HTML阅读次数: 27
  • 引用次数: 0
历史
  • 收稿日期:2015-08-26
  • 最后修改日期:2016-10-26
  • 录用日期:2016-10-09
  • 在线发布日期: 2017-02-10
文章二维码