Abstract:Determination of resilient coefficients of rubber material is essential to the design and optimization of elastomers in most engineering fields. Based on the nonlinear elasticity theory, a set of experiment including uniaxial tension, uniaxial compression and planar tension tests under large deformation was conducted and coefficients of a hyperelastic model were fitted. The testing data and corresponding simulation results can be used, on the one hand, to integrallty define the initial shear modulus, Young’s modulus, bulk modulus and apparent compressive modulus of present material, and on the other hand, to accurately predict the material nonlinearity and strong dependence of compressive modulus under different test conditions. Then a set of material mechanics experiment within small deformations was performed and the corresponding linear modulus were calculated. Finally, several conclusions about small and large material mechanics experiment as well as linear and nonlinear elastic theory were proposed through comparative analysis.