电动汽车振动信号混沌特性
CSTR:
作者:
作者单位:

同济大学,同济大学

中图分类号:

U461.1

基金项目:

教育部高等学校博士学科点专项科研基金(20120072110013)


Experimental Research on Chaotic Analysis of Electric Vehicle Vibration Signal
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [13]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    为研究电动汽车的混沌动力学特性,对某款电动汽车进行了实车试验,并对试验数据进行了混沌动力学特性分析.首先,在铺路面上对电动汽车进行实车试验,测得轮心垂向、减振器上安装点垂向和电池底部中心垂向的振动加速度信号.其次,利用小波分析对信号进行降噪处理,比较了全局阈值降噪和分层阈值降噪的去噪效果,发现分层阈值降噪对信号的处理效果较好.利用降噪后的信号计算得到左前轮心垂向、左前减振器上安装点垂向和电池底部中心垂向信号的庞加莱截面和相图,并利用互信息法计算时间延迟、Cao法计算最小嵌入维,最后利用小数据量法得到最大李雅普诺夫指数.分析结果表明,汽车在铺路面上行驶时存在混沌运动.研究结果的应用,可使电动汽车在设计和分析时,能尽可能地避免系统混沌运动的产生.

    Abstract:

    In order to research chaotic dynamics of electric vehicles, the vehicle experiment was carried out, and the experimental data were analysed. First, the vehicle experiment in the paving road was carried out, the vertical acceleration signals of wheel center, shock absorber top mount and battery bottom center were measured. Secondly, the noise of signals were reduced by using the wavelet analysis, and compare the effect between global threshold noise reduction and layered threshold noise reduction, then found that the effect of the layered threshold was better. With the denoised signals, the Poincaré sections and phase diagrams of the vertical of left front wheel center, the front left shock absorber top mount and battery bottom center were calculated, and time delay was calculated by using the mutual information method, and also minimum embedding dimension was calculated through the Cao method, the largest Lyapunov exponent was obtained by using the small data sets method. The results show that the presence of chaotic motions in the electric vehicle when traveling on paving road. The results of the study can avoid the generation of chaotic motion in the design and analysis of electric vehicle as much as possible.

    参考文献
    [1] 李月, 杨宝俊. 混沌振子检测引论[M]. 北京:电子工业出版社, 2004.LI Yue, YANG Baojun. Introduction of chaotic oscillator detection [M]. Beijing: Publishing House of Electronics Industry, 2004.
    [2] Zhang Z , Chau K T,Wang Z. Analysis and Stabilization of Chaos in the Electric-Vehicle Steering System[C]// IEEE Transactions on Energy Conversion, 2013, 62(1):118~126.
    [3] 牛治东, 吴光强. 电动汽车非线性悬架系统混沌特性[J]. 同济大学学报:自然科学版, 2015, 43(3):442-447.NIU Zhidong, WU Guangqiang. Chaos in Nonlinear Suspension System of Electric Vehicle [J]. Journal of Tongji University (Natural Science), 2015, 43(3):442- 447.
    [4] Gao Y. Hopf Bifurcation and Chaos in Synchronous Reluctance Motor Drives[C]//IEEE Transactions on Energy Conversion, 2004, 19(2):296~302.
    [5] 吕金虎, 陆君安, 陈士华. 混沌时间序列分析及其应用[M]. 武汉:武汉大学出版社, 2002.LV Jinhu, LU Junan, CHEN Shihua. Chaotic time series analysis and its application [M]. Wuhan: Wuhan University Press, 2002.
    [6] Barrett M D.Continuous Control of Chaos.Phys. D,1996,91(4).
    [7] Hao Bai-lin.Elementary Symbolic Dynamics and Chaos in Dissipative Systems[M].World Scientific , 1989.
    [8] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano.Determining Lyapunov Exponents from a Time Series.Phys. D, 1985, 16.
    [9] 韩敏.混沌时间序列预测理论与方法[M].北京:中国水利水电出版社, 2007.Han Min. Chaotic time series prediction theory and method [M]. Beijing: China Water Power Press, 2007.
    [10] 林小龙, 张晓龙, 孙仁云. 基于小波分析的车轮六分力信号的去噪研究[J]. 湖北汽车工业学院学报, 2014, 28:51-53.LIN Xiaolong, ZHANG Xiaolong, SUN Renyun. Study on Donoising of Six Axis Wheel Force Signal Based on Wavelet Analysis [J]. Journal of Hubei University of Automotive Technology, 2014, 28:51-53.
    [11] 张菁, 樊养余, 李慧敏等. 相空间重构中延迟时间选取的新算法[J]. 计算物理, 2011, 28(3): 469-474.ZHANG Jing, FAN Yangyu, LI Huimin, etal. An Improved Alogorithm for Choosing Delay Time in Phase Space Reconstruction [J]. Chinese Journal og Computational Physics, 2011, 28(3): 469-474.
    [12] CAO Liangyue. Practical method for determining the minimum embedding dimension of a scalar time series. Physica D, 1997, 110:43-50.
    [13] 杨永锋, 仵敏娟, 高喆, 吴亚峰, 任兴民. 小数据量法计算最大Lyapunov指数的参数选择[J]. 振动、测试与诊断, 2012, 32:371-374.YANG Yongfeng, WU Minjuan, GAO Zhe, WU Yafeng, REN Xingmin. Parameters Selection for Calculating Largest Lyapunov Exponent From Small Data Sets [J]. Journal of Vibration Measurement Diagnosis, 2012, 32:371-374.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

牛治东,吴光强.电动汽车振动信号混沌特性[J].同济大学学报(自然科学版),2016,44(12):1918~1923

复制
分享
文章指标
  • 点击次数:1154
  • 下载次数: 700
  • HTML阅读次数: 15
  • 引用次数: 0
历史
  • 收稿日期:2015-09-11
  • 最后修改日期:2016-10-25
  • 录用日期:2016-07-07
  • 在线发布日期: 2017-01-10
文章二维码