降雨条件下城市快速路车速模糊神经网络预测方法
作者:
作者单位:

同济大学 道路与交通工程教育部重点实验室,青岛理工大学,同济大学 道路与交通工程教育部重点实验室,同济大学 道路与交通工程教育部重点实验室

作者简介:

通讯作者:

中图分类号:

U491.2

基金项目:


Fuzzy Neural Network System for Urban Expressway Speed Prediction on Rainy Days
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    为了提高降雨条件下快速路车速短时预测的准确性,考虑到各影响因素的模糊性以及影响作用非线性变化特点,提出了一个以交通量、占有率和降雨量为输入,以车速为输出的模糊神经网络预测方法.利用上海市快速路的交通流与气象数据确定了最优模型结构,并与自回归积分滑动平均模型、反向传播神经网络模型和支持向量机模型进行对比分析.该方法的预测均方根误差为3.05 km?h-1,预测平均误差为3.95%,均优于其他3种方法.

    Abstract:

    A fuzzy neural network system was developed to improve urban expressway shortterm speed prediction accuracy on rainy days, taking fuzzy influencing factors such as traffic volume, occupancy and precipitation, as well as their nonlinear interaction into account. Based on the traffic flow and weather data of Shanghai, the best model structure was determined and its performance was evaluated against those of the existing autoregressive integrated moving average model, the back propagation neutral network, and the support vector machines model. The results show that the root mean square error and mean absolute percent error of the fuzzy neural network system are 3.05 km?h-1 and 3.95% respectively, which outperform those of the other three prediction models.

    参考文献
    相似文献
    引证文献
引用本文

孙洪运,杨金顺,李林波,吴兵.降雨条件下城市快速路车速模糊神经网络预测方法[J].同济大学学报(自然科学版),2016,44(11):1695~1701

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2015-10-06
  • 最后修改日期:2016-08-30
  • 录用日期:2016-07-11
  • 在线发布日期: 2016-12-02
  • 出版日期:
文章二维码