Department of Mathematics, Tongji University, Shanghai 200092, China; School of Mathematics and Statistics, Chuxiong Normal University, Chuxiong Yunnan 675000, China 在期刊界中查找 在百度中查找 在本站中查找
Department of Mathematics, Tongji University, Shanghai 200092, China; College of Mathematics Physics and Information Engineering, Jiaxing University, Jiaxing Zhejiang 314001, China 在期刊界中查找 在百度中查找 在本站中查找
Finite volume methods are developed for pricing American options under Kou jumpdiffusion model. Based on a linear finite element space, both backward Euler and CrankNicolson full discrete finite volume schemes are constructed. For the approximation of the integral term in the partial integrodifferential equation (PIDE), an easytoimplement recursion formula is employed. Then we propose the modulusbased successive overrelaxation (MSOR) method for the resulting linear complementarity problems (LCPs). The H+ matrix property of the system matrix which guarantees the convergence of the MSOR method is analyzed. Numerical experiments confirm the efficiency and robustness of the proposed methods.
[1] Black F, Scholes M. The pricing of options and corporate liabilities [J]. Journal of Political Economy, 1973, 81(3): 637-654.
[2] Merton R C. Option pricing when underlying stock return are discontinuous [J]. Journal of Financial Economics, 1976, 3: 125-144.
[3] Kou S G. A jump-diffusion model for option pricing [J]. Management Science, 2002, 48(8): 1086-1101.
[4] Kou S G, Wang H. Option pricing under a double exponential jump diffusion model [J]. Management Science, 2004, 50(7): 1178-1198.
[5] Tavella D, Randall C. Pricing financial instruments: The finite difference method [J]. John Wiley Sons, Chichester, UK, 2000.
[6] Andersen L, Andreasen J. Jump-diffusion processes: Volatility smile fitting and numerical methods for option pricing [J]. Review of Derivatives Research, 2000, 4(3): 231-262.
[7] d'Halluin Y, Forsyth P A, Labahn G. A penalty method for American options with jump diffusion processes [J]. Numerische Mathematik, 2004, 97(2): 321-352.
[8] d'Halluin Y, Forsyth P A, Vetzal K R. Robust numerical methods for contingent claims under jump diffusion processes [J]. IMA Journal of Numerical Analysis, 2005, 25(1): 87-112.
[9] Toivanen J. Numerical valuation of European and American options under Kou's jump-diffusion model [J]. SIAM Journal on Scientific Computing, 2008, 30(4): 1949-1970.
[10] Salmi S, Toivanen J. An iterative method for pricing American options under jump-diffusion model [J]. Applied Numerical Mathematics, 2011, 61(7): 821-831.
[11] Zhang K, Wang S. Pricing options under jump diffusion processes with fitted finite volume method [J]. Applied Mathematics and Computation, 2008, 201(1): 398-413.
[12] Zhang K, Wang S. A computational scheme for options under jump diffusion processes [J].International Journal of Numerical Analysis and Modeling, 2009, 6(1): 110-123.
[13] Cryer C W. The solution of a quadratic programming using systematic overrelaxation [J]. SIAM Journal on Control and Optimization, 1971, 9(3): 385-392.
[14] Ikonen S, Toivanen J. Operator Splitting Methods for American option pricing with stochastic volatility [J]. Numerische Mathematik, 2009, 113(2): 299-324.
[15] 张凯. 美式期权定价—基于罚方法的金融计算 [M]. 经济科学出版社, 2012.Zhang K. Pricing American options—financial computation based on the penalty method [M]. Economic Science Press, 2012.
[16] Murty K. Linear complementarity, linear and nonlinear programming [M]. Heldermann: Berlin, 1988.
[17] Hadjidimos A, Tzoumas M. Nonstationary extrapolated modulus algorithms for the solution of the linear complementarity problem [J]. Linear Algebra and its Applications. 2009, 431(1): 197-210.
[18] Dong J L, Jiang M Q. A modified modulus method for symmetric positive-definite linear complementarity problems [J]. Numerical Linear Algebra with Applications, 2009, 16(2): 129-143.
[19] Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity Problems [J]. Numerical Linear Algebra with Applications 2010, 17(6): 917-933.
[20] Zheng N, Yin J F. Modulus-based successive overrelaxation method for pricing American options [J]. Journal of Applied Mathematics and Informatics, 2013, 31(5): 769-784.
[21] Zheng N, Yin J F. Accelerated modulus-based matrix splitting iteration methods for linear complementarity problem [J]. Numerical Algorithms, 2013, 64(2): 245-262.
[22] Zheng N, Yin J F. Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an matrix [J]. Journal of Computational and Applied Mathematics, 2014, 260: 281-293.
[23] Kangro R, Nicolaides R. Far field boundary conditions for Black-Scholes equations [J]. SIAM Journal on Numerical Analysis, 2000, 38(4): 1357-1368.