高强度U肋加劲钢板残余应力测试及模拟分析
CSTR:
作者:
作者单位:

同济大学,新南威尔士大学,同济大学,中交公路规划设计院有限公司

中图分类号:

TG404

基金项目:

交通运输部建设科技项目(2011 318 494 890)


Experimental and Numerical Analysis of Welding Residual Stress in High Strength URib Stiffened Steel Paltes
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [18]
  • |
  • 相似文献 [20]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    为研究Q420级高强度U肋加劲钢板纵向焊接残余应力分布特点及影响因素,利用切割法对U肋加劲钢板进行了纵向残余应力测试,通过三维实体热弹塑性有限元模型和单元生死技术模拟了焊缝填充和焊接过程,比较分析了高强度钢和普通强度钢的残余应力分布特点,探讨了母板厚度及U肋的厚度、间距、宽度、高度对加劲板焊接残余应力的影响.研究结果表明,U肋两侧的焊接先后顺序并不影响加劲板的残余应力分布;非焊接区域残余压应力峰值和分布特点与板件材料的屈服强度基本不相关;板件厚度、U肋顶宽和U肋高度是影响高强度U肋加劲钢板焊接残余应力的主要因素.

    Abstract:

    To study the distribution characteristics and influencing factors of longitudinal welding residual stresses in high strength Urib stiffened steel plates of Q420 grade, the model test of longitudinal residual stresses in Urib stiffened steel plates were measured using the method of sectioning technique. Besides, a 3D solid thermal elastic plastic finite element method (FEM) was developed by using an element birth and death method to simulate the process of weld filler variation and welding, and the residual stress distribution between high strength steel and common strength steel was analyzed. Furthermore, the effects of flange thickness, Urib thickness, space, width and height on welding residual stresses were studied comparatively. The results show that the welding sequence in bilateral rib has no effect on stress distribution. The longitudinal compressive residual stresses out of weld zone is irrelevant to yield strength. Plate thickness, Urib width and height are the main factors affecting welding residual stresses in high strength Urib stiffened steel plates.

    参考文献
    [1] International Association for Bridge and Structural Engineering. Use and Application of High-Performance Steels for Steel Structures[M]. Zurich: IABSE, 2005.
    [2] Shi G, Hu F, Shi Y. Recent research advances of high strength steel structures and codification of design specification in China[J]. International Journal of Steel Structures. 2014, 14: 873-87.
    [3] 洪渊. 焊接结构学[M]. 北京: 机械工业出版社; 2008. Hong Y. Welding Structure[M]. Beijing: Machinery Industry Press; 2008. (in Chinese)
    [4] Xin H, Liu Y, He J, Zhang Y. Experimental and analytical study on stiffened steel segment of hybrid structure[J]. Journal of Constructional Steel Research, 2014, 100: 237-58.
    [5] Deng D, Liang W, Murakawa H. Determination of welding deformation in fillet-welded joint by means of numerical simulation and comparison with experimental measurements[J]. Journal of Materials Processing Technology, 2007, 183(2-3): 219-25.
    [6] Peri? M, Tonkovi? Z, Rodi? A, Surjak M, Gara?i? I, Boras I, et al. Numerical analysis and experimental investigation of welding residual stresses and distortions in a T-joint fillet weld[J]. Materials & Design, 2014, 53: 1052-63.
    [7] 班慧勇, 施刚, 石永久, 王元清. 国产Q460高强度钢材焊接工字形截面残余应力试验及分布模型研究[J]. 工程力学, 2014, 06: 60-69. Ban H, Shi G, Shi Y, Wang Y. Experimental investigation and modelling of residual stress in Q460 high strength steel welding I sections[J]. Engineering Mechanics, 2014, 06: 60-69. (in Chinese)
    [8] Ban H, Shi G, Shi Y, et al. Residual stress of 460MPa high strength steel welded box section: Experimental investigation and modelling[J]. Thin-Walled Structures, 2013, 64: 73-82.
    [9] 昊喜之. 统计学: 从数据到结论[M]. 北京: 中国统计出版社; 2004. Wu X. Statistics: From data to theory[M]. Beijing: China Statistics Press; 2004. (in Chinese)
    [10] 屈立军, 李焕群, 王跃琴, 张辉, 保彦晴. 国产钢结构用Q345(16Mn)钢高温力学性能的恒温加载试验研究[J]. 土木工程学报, 2008, 41(7): 33-40. Qu Lijun, Li Huanqun, Wang Yueqin, Zhang Hui, Bao Yanqing. Material properties of Q345 (16Mn) steel under loading and constant temperature[J]. China Civil Engineering Journal, 2008, 41(7): 33-40. (in Chinese)
    [11] 李国强, 陈凯, 蒋首超, 殷颖智. 高温下Q345钢的材料性能试验研究[J]. 建筑结构, 2001, 31(1): 53-55. Li Guoqiang, Chen Kai, Jiang Shouchao, Yin Yingzhi. Experimental studies on high-temperature material properties of Q345 steel[J]. Building Structure, 2001, 31(1): 53-55. (in Chinese)
    [12] 王卫永, 刘兵, 李国强. 高强度Q460钢材高温力学性能试验研究[J]. 防灾减灾工程学报, 2012, 32: 30-35. Wang Weiyong, Liu Bing, Li Guoqiang. Experimental study on mechanical properties of Q460 high strength steel at elevated temperature[J]. Journal of Disaster Prevention and Mitigation Engineering, 2012, 32: 30-35. (in Chinese)
    [13] 王跃琴. 16Mn结构钢的高温力学性能试验研究[D]. 西安: 西安科技大学, 2006: 24-40. Wang Yueqin. Experimental research on mechanical behaviours of structural steel 16Mn at elevated temperatures[D]. Xi`an: Xi`an University of Science and Technology, 2006: 24-40. (in Chinese)
    [14] Outinen J, Makelainen P. Mechanical properties of structural steel at elevated temperatures and after cooling down[J]. Fire and Materials, 2004, 28(2-4): 237-251.
    [15] Chen J, Young B, Uy B. Behavior of high strength structural steel at elevated temperatures[J]. Journal of Structural Engineering, 2006, 132(12): 1948-1954.
    [16] Deng D, Murakawa H. Prediction of welding distortion and residual stress in a thin plate butt-welded joint[J]. Computational Materials Science, 2008, 43(2): 353-365.
    [17] Deng D, Luo Y, Serizawa H, Shibahara M, Murakawa H. Numerical simulation of residual stress and deformation considering phase transformation effect[J]. Transactions of JWRI, 2003, 32(2): 325-333.
    [18] EN1993-2:2006. Eurocode 3-Design of steel structures-Part 2: Steel bridges. Brussels: Standardisation[S]. ECF; 2006.
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

肖维思,王佳,刘玉擎,黄李骥.高强度U肋加劲钢板残余应力测试及模拟分析[J].同济大学学报(自然科学版),2016,44(11):1645~1652

复制
分享
文章指标
  • 点击次数:2436
  • 下载次数: 1147
  • HTML阅读次数: 62
  • 引用次数: 0
历史
  • 收稿日期:2015-12-17
  • 最后修改日期:2016-03-01
  • 录用日期:2016-06-23
  • 在线发布日期: 2016-12-02
文章二维码