基于异构平台的并行最大最小蚁群算法
CSTR:
作者:
作者单位:

同济大学电子与信息工程学院 上海 200092,同济大学电子与信息工程学院 上海 200092,同济大学电子与信息工程学院 上海 200092

中图分类号:

TP301.6

基金项目:

国家自然科学基金(61272268);上海市青年科技启明星计划 (15QA1403900);霍英东教育基金会高等院校青年教师基金(142002);教育部新世纪优秀人才支持计划(NCET-12-0413);同济大学中央高校基本科研业务费专项资金。


Parallel Maxmin Ant System Based on Heterogeneous Platform
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [21]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    最大最小蚂蚁系统(Maxmin Ant System,MMAS)是一种性能优良的启发式算法,常用于解决组合优化问题.当解决的目标问题规模较大、迭代轮次较多时,最大最小蚁群算法存在运行时间长的缺点.试验以开源串行包ACOTSP为基准,利用GPU多线程并发的优势,采用并行蚂蚁策略将MMAS在CPUGPU协同异构计算平台上并发实现.算法在GPU上运行时的影响因素,如数据传输、内存层次、库函数调用等,也得到有效分析,并作出针对性优化.试验最终取得了高达13倍的加速,表明并行MMAS策略具有高效性和实用性.

    Abstract:

    Maxmin Ant System is a kind of heuristic algorithm with excellent performance, which is commonly used to solve combinatorial optimization problems. But it costs a long time when scale of the target problem is large as well as iterations are a lot. The experiment took the open source packet ACOTSP as a reference, used the advantage of multithreaded GPU, and implemented ACO algorithm on CPUGPU platform by parallel ants strategy. While the parallel algorithm is running on GPU, we also analyzed the impact factors carefully, such as data transmission, memory hierarchy, library calls et al, and made useful optimization. Eventually, the experiment made 13 times speedup, proving the parallel strategy is highly efficient and applicable.

    参考文献
    Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents[J].Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 1996, 26(1): 29-41.
    Stützle T, Hoos H H. MAX–MIN ant system[J]. Future generation computer systems, 2000, 16(8): 889-914.
    Lenstra J K, Kan A H G R, Shmoys D B. The traveling salesman problem: a guided tour of combinatorial optimization[M]. New York: Wiley, 1985.
    Khatri K, Gupta V K. A Survey Paper on Solving TSP using Ant Colony Optimization on GPU[J]. Compusoft, 2014, 3(12): 1354.
    B. Bullnheimer, G. Kotsis, C. Strauss, Parallelization strategies for the ant system, in: R. De Leone, A. Murli, P. Pardalos, G. Toraldo (Eds.), High Performance Algorithms and Software in Nonlinear Optimization, in: Applied Optimization, vol. 24, Kluwer, Dordrecht, 1997, pp. 87–100.
    Stützle T. ACOTSP: A software package of various ant colony optimization algorithms applied to the symmetric traveling salesman problem[J]. URL http://www. aco-metaheuristic. org/aco-code, 2002.
    M. Middendorf, F. Reischle, H. Schmeck, Multi colony ant algorithms, Journal of Heuristics 8 (3) (2002) 305–320.
    王诏远, 王宏杰, 邢焕来, 李天瑞. 基于Spark的蚁群优化算法[J]. 计算机应用, 2015, 35(10): 2777-2780. Wang Z Y, Wang H J, Xing H L et al. Ant colony optimization algorithm based on Spark[J]. Computer Application, 2015, 35(10): 2777-2780).
    Wang Z Y, Tian-Rui L I, Xiu-Wen Y I. Approach for Development of Ant Colony Optimization Based on MapReduce[J]. Computer Science, 2014, 41(7):261-265.
    Delévacq A, Delisle P, Gravel M, et al. Parallel Ant Colony Optimization on Graphics Processing Units[J]. Journal of Parallel Distributed Computing, 2013, 73(1): 52-61.
    Khatri K, Gupta V K. Research on Solving Travelling Salesman Problem using Rank Based Ant System on GPU[J]. Compusoft, 2015, 4(5): 1778.
    Cecilia J M, García J M, Nisbet A, et al. Enhancing data parallelism for ant colony optimization on gpus[J]. Journal of Parallel Distributed Computing, 2013, 73(1):42-51.
    Stutzle T, Hoos H. MAX-MIN ant system and local search for the traveling salesman problem[C]//Evolutionary Computation, 1997., IEEE International Conference on. IEEE, 1997: 309-314.
    Dawson L, Stewart I. Accelerating ant colony optimization-based edge detection on the GPU using CUDA[C]//Evolutionary Computation (CEC), 2014 IEEE Congress on. IEEE, 2014: 1736-1743.
    Garey M R, Johnson D S, Stockmeyer L. Some simplified NP-complete graph problems[J]. Theoretical computer science, 1976, 1(3): 237-267.
    Fu J, Lei L, Zhou G. A parallel ant colony optimization algorithm with GPU-acceleration based on all-in-roulette selection[C]//Third International Workshop on Advanced Computational Intelligence. 2010: 260-264.
    Cuda C. Programming guide[J]. NVIDIA Corporation, July, 2012.
    Sanders J, Kandrot E, 聂雪军. GPU高性能编程CUDA实战[M]. 机械工业出版社, 2011. Sanders J, Kandrot E, Nie X J. CUDA by Example:an Introduction to General-Purpose GPU Programming[M]. China Machine Press, 2011.
    Graham S L, Kessler P B, Mckusick M K. Gprof: A call graph execution profiler[C]//ACM Sigplan Notices. ACM, 1982, 17(6): 120-126.
    Amdahl G M. Validity of the single processor approach to achieving large scale computing capabilities[C]//Proceedings of the April 18-20, 1967, spring joint computer conference. ACM, 1967: 483-485.
    Reinelt G. TSPLIB—A traveling salesman problem library[J]. ORSA journal on computing, 1991, 3(4): 376-384.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

黄震华,赵振岐,林培裕,梅建华.基于异构平台的并行最大最小蚁群算法[J].同济大学学报(自然科学版),2016,44(12):1949~1955

复制
分享
文章指标
  • 点击次数:1387
  • 下载次数: 895
  • HTML阅读次数: 20
  • 引用次数: 0
历史
  • 收稿日期:2015-12-23
  • 最后修改日期:2016-10-25
  • 录用日期:2016-10-09
  • 在线发布日期: 2017-01-10
文章二维码