Abstract:Wind is a nonstationary stochastic process, but the traditional time domain or frequency domain analytical procedure can’t quantify its nonstationary characteristics. A visual and quantitative signal analytical procedure was put forward, which was the recurrence quantification analytical procedure. In this procedure, there were no specific requirements for the stationary characteristics of system and the procedure was not sensitive to noise. Firstly, the nonstationary characteristics and other characteristics of the typical time series of hurricane Gustavo (2008) were obtained by utilizing phase space reconstruction techniques and recurrence plot theory. Thereafter, 6 recurrence quantification indexes were imported, which were recurrence rate, determinism, entropy, average diagonal line length, laminarity and trapping time and quantifies the signal characteristics of hurricane in the whole process of making landing, and defines one boundary for every index between hurricane signal and normal wind signal. Lastly, the procedure and all the indexes defined are verified by typhoon Muifa (1109). The result shows that the early hurricane has certain periodicity and stationarity; however, the nonlinearity and nonstationary are particularly salient for the middle hurricane; 6 indexes can distinguish the signal characteristics between hurricane and normal wind; recurrence quantification analytical procedure completely suitable for the wind signal researches, and can fully describe the nonstationary characteristics of wind signals.