基于图像纹理分析的海域磁异常分区
CSTR:
作者单位:

同济大学,同济大学,同济大学

中图分类号:

P738.3

基金项目:

中国海及邻域地质地球物理系列图项目(GZH200900504);国家自然科学基金(41541027);国家“八六三”高技术研究发展计划(2010AA09Z302)


Marine Magnetic Anomaly Partition Based on Image Texture Analysis
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    摘 要:将图像纹理分析技术应用于海洋磁异常资料的分区,采用Gabor滤波器和灰度共生矩阵相结合的图像纹理分析方法,提取海洋磁异常的纹理特征信息,通过OKMS聚类算法实现不同纹理特征区域磁异常场的分区。模型试验结果表明,利用Gabor滤波器和灰度共生矩阵相结合的图像纹理分析方法可有效提取磁异常的纹理特征信息,对磁异常纹理特征信息的聚类分区取得较好效果。实际应用于加罗林海域磁异常的分区结果显示,加罗林海域可分为11个磁异常区块,分区结果与条带磁异常区和岩浆活动区对应较好,该方法为海洋磁异常的分区解释提供了参考依据。

    Abstract:

    Abstract: An image texture analysis method integrated Gabor filter and Gray-level co-occurrence matrix is used to extract the texture features of marine magnetic anomalies. Using OKMS clustering algorithm realized magnetic anomaly field partition of different texture features .The model test and actual application results show that image texture analysis method integrated Gabor filter and Gray-level co-occurrence matrix can effectively extract the texture characteristics information of magnetic anomalies. The partition results of Caroline Marine magnetic anomaly show that Caroline plate magnetic anomaly can be divided into 11 areas, partition results coincide well with strip magnetic anomaly areas and magmatic activity areas,and this method provides a reference for processing and interpretation of magnetic anomaly

    参考文献
    [1] Wijin C,Perez C,Kowalczyk P. Theta map:Edge detection in magnetic data [J]. Geophysics,2005,70(4):L39-L43.
    [2] 严良俊,胡文宝,姚长利. 重磁资料面积处理中的滤波增强技术与应用[J].勘探地球物理进展,2006,29(2):102-103.YAN Liangjun,HU Wenbao,YAO Changli. Filtering enhancement of gravity and magnetic data in the dense ladder-like zone [J]. Progress in Exploration Geophysics,2006,29(2):102-103.
    [3] Cooper G R J,Cowan D R. Edge enhancement of potential field data using normalized statistics [J]. Geophysics,2008,73(3):H1-H4.
    [4] 王万银,邱之云,杨永,等.位场边缘识别方法研究进展[J].地球物理学进展,2010,25(1):196-210.WANG Wanyin,QIU Zhiyun,YANG Yong,et al. Some advances in the edge recognition of the potential field[J].Progress in Geophysics,2010,25(1):196-210.
    [5] 姜效典.南海磁异常分区研究:应用人工神经网络方法[J].青岛海洋大学学报:自然科学版,1996,1:83-90.JIANG Xiaodian. Using artificial neural network to divide the magnetic anomaly field of the South China Sea [J]. Journal of Ocean University of Qingdao,1996,1:83-90.
    [6] ZHANG Lili,HAO Tianyao,WU Jiansheng,et al. Application of Image enhancement Techniques to Potential Field Data [J]. Applied Geophysics,2005,3(2):145-152.
    [7] Jain A K,Farrokhnia F. Unsupervised Texture Segmentation Using Gabor Filter [J]. Pattern Recognition,1991,24(12):1167-1186.
    [8] Baraldi A,Parminggian F. An Investigation on the Texture Characteristics Associated with Gray Level Co-occurrence Matrix Statistical Parameters [J].IEEE Transactions on Geoscience and Remote Sensing,1995,33(2):293-302.
    [9] Haralick R M,Shanmugam K,Dinstein I. Textural feature for image classification[J].IEEE Transactions on Systems,Man and Cybernetics,1973,SCM-3 (6):610-621.
    [10] 刘丽,匡纲要.图像纹理特征提取方法综述[J].中国图象图形学报,2009,14(4):622-635.LIU Li,KUANG Gangyao. Overview of image textural feature extraction methods[J]. Journal of Image and Graphics,2009,14(4):622-635.
    [11] Manjunath B S,Ma W Y. Texture Features for Browsing and Retrieval of Image Data [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(8):837-842.
    [12] 姚伯初,曾维军等.中美合作调研南海地质专报[M].武汉:中国地质大学出版社,1994.YAO Baichu,ZENG Weijun,et al. The Geological memoir of South China Sea surveyed jointly by China USA [M]. Wuhan:China University of Geosciences press,1994.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

吴健生,耿德祥,王明明.基于图像纹理分析的海域磁异常分区[J].同济大学学报(自然科学版),2017,45(05):0776~0781

复制
分享
文章指标
  • 点击次数:2580
  • 下载次数: 1336
  • HTML阅读次数: 504
  • 引用次数: 0
历史
  • 收稿日期:2016-03-09
  • 最后修改日期:2017-03-20
  • 录用日期:2017-02-16
  • 在线发布日期: 2017-07-20
文章二维码