双向水平地震作用下场地土三维非线性反应分析
CSTR:
作者:
作者单位:

同济大学,同济大学

中图分类号:

TU411

基金项目:

国家自然科学基金(91315301-05,41172246);中央高校基本科研业务费专项资金(2015-90))


Nonlinear ThreeDimensional Seismic Ground Response Analysis in Bidirectional Horizontal Earthquake
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [29]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    针对双向水平地震作用下场地土地震三维非线性反应问题,基于多重屈服面模型建立了三维竖向土柱模型,重点考察了影响场地土地震非线性分析准确性和效率的相关因素,其中多重屈服面模型参数、土层厚度划分、边界条件以及组成阻尼的频率或模态等的合理选择是进行非线性地震反应分析的关键参数.当土层性质差异明显时,可以根据波速的不同分为多个子系统,各个子系统分别选用相对应的阻尼参数进行分析.为确定分析方法的计算精度,与已有文献的离心动力试验结果对比,验证了三维竖向土柱模型的可靠性,该模型可以有效地应用于双向非线性地震反应分析.

    Abstract:

    The threedimensional vertical column system and the multiyield surface plasticity constitutive model were implemented for the problem of nonlinear seismic site response to bidirectional horizontal earthquake loading. The practical issue concerned the specification of the accuracy and efficiency of site response analysis. The crucial parameters describing the multiyield surfaces, soil thickness division and boundary conditions, and frequencies or modes for the damping formulation could help preforming the accurate nonlinear seismic ground response in the bidirectional earthquake. The layered soil column was divided into multiple subsoils with different viscous damping matrixes according to the shear velocities as the soil properties were significantly different. The accuracy of the threedimensional soil column method was verified by the dynamic centrifuge model test results. It is concluded that the threedimensional vertical column model can be used for bidirectional nonlinear seismic local ground response analysis.

    参考文献
    [1] YANG J, YAN X R. Site response to multi-directional earthquake loading: a practical procedure [J]. Soil Dynamics and Earthquake Engineering, 2009, 29(4): 710-721.
    [2] PENZIEN J, WATABE M. Characteristics of 3-dimensional earthquake ground motions [J]. Earthquake Engineering & Structural Dynamics, 1974, 3(4): 365-373.
    [3] LI X S, WANG Z L, SHEN C K. SUMDES: A nonlinear procedure for response analysis of horizontally-layered sites subjected to multidirectional earthquake loading [R]. Department of Civil Engineering, University of California, Davis, 1992.
    [4] SU D, LI X S. Impact of multidirectional shaking on liquefaction potential of level sand deposits [J]. Geotechnique, 2008, 58(4): 259-267.
    [5] ISHIHARA K, YAMAZAKI F. Cyclic Simple Shear Tests on Saturated Sand in Multi-directional Loading [J]. Soils and Foundations, 1980, 20(1): 45-59.
    [6] GHABOUSSI J, DIKMEN S U. LASS-III, computer program for seismic response and liquefaction of layered ground under multi-directional shaking [R]. University of Illinois at Urbana-Champaign Urbana, Illinois, 1979.
    [7] 李宏男, 孙立晔. 地震面波产生的地震动转动分量研究[J]. 地震工程与工程振动, 2001, 21(01): 15-23.
    LI Hong-nan, SUN Li-ye. Rotational components of earthquake ground motions derived from surface waves [J]. Earthquake Engineering and Engineering Vibration, 2001, 21(1): 15-23.
    [8] SCHNABEL P B, LYSMER J, SEED H B. SHAKE: a computer program for earthquake response analysis of horizontally layered sites [R]. NISEE e-Library, Earthquake Engineering Research Center, University of California, Berkeley, 1972.
    [9] 陈青生, 高广运, 何俊锋. 上海软土场地三维非线性地震反应分析[J]. 岩土力学, 2011, 32(11): 3461-3467.
    CHEN Qing-sheng, GAO Guang-yun, HE Jun-feng. Three-dimensional nonlinear analysis of seismic groundresponse of soft soils in Shanghai [J]. Rock and Soil Mechanics, 2011, 32(11): 3461-3467.
    [10] KWOK A, STEWART J, HASHASH Y, et al. Use of exact solutions of wave propagation problems to guide implementation of nonlinear seismic ground response analysis procedures [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133(11): 1385-1398.
    [11] STEWART J P, KWOK A O-L, HASHASH Y M, et al. Benchmarking of Nonlinear Geotechnical Ground Response Analysis Procedures [R]. Pacific Earthquake Engineering Research Center, College of Engineering, University of California, Berkeley, 2008.
    [12] MCKENNA F, FENVES G L. The OpenSees command language manual, Version 1.2 [R]. Pacific Earthquake Engineering Research Center, University of California, Berkeley, 2007.
    [13] PREVOST J H. Mathematical modelling of monotonic and cyclic undrained clay behavior [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1977, 1(2): 195-216.
    [14] PREVOST J H. A simple plasticity theory for frictional cohesionless soils [J]. International Journal of Soil Dynamics and Earthquake Engineering, 1985, 4(1): 9-17.
    [15] YANG Z. Numerical modeling of earthquake site response including dilation and liquefaction [D]. Columbia University, 2000.
    [16] 高广运, 时刚, 顾中华. 一个考虑循环荷载作用的简化模型[J]. 岩土力学, 2008, 29(5): 1195-1199.
    GAO Guang-yun, SHI Gang, GU Zhong-hua et al. A simplified elastoplastic constitutive model under undrained cyclic loading [J]. Rock and Soil Mechanics, 2008, 29(5): 1195-1199.
    [17] YANG Z, LU J, ELGAMAL A. User's Manual-OpenSees Soil Models and Solid-Fluid Fully Coupled Elements [R]. Department of Structural Engineering, University of California, San Diego, 2008.
    [18] ELGAMAL A, YANG Z, LU J. Cyclic1D 1.3, Seismic Ground Response User's Manual [R]. Department of Structural Engineering, University of California, San Diego, 2012.
    [19] MCGANN C R, ARDUINO P, MACKENZIE-HELNWEIN P. Stabilized single-point 4-node quadrilateral element for dynamic analysis of fluid saturated porous media [J]. Acta Geotechnica, 2012, 7(4): 297-311.
    [20] LYSMER J, KUHLEMEYER R L. Finite dynamic model for infinite media [J]. Journal of the Engineering Mechanics Division, ASCE, 1969, 95(4): 859-878.
    [21] Phillips C, HASHASH Y M A. Damping formulation for nonlinear 1D site response analyses [J]. Soil Dynamics and Earthquake Engineering, 2009, 29(7): 1143-1158.
    [22] 楼梦麟, 邵新刚. 深覆盖土层Rayleigh阻尼矩阵建模问题的讨论[J]. 岩土工程学报, 2013, 35(7):1272-1279. LOU Meng-lin, SHAO Xing-gang. Discussion on modeling issues of Rayleigh damping matrix in soil layers with deep deposit [J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1272-1279.
    [23] WILSON D W, BOULANGER R W, KUTTER B L. Soil-pile-superstructure interaction at soft or liquefiable soil sites-Centrifuge data report for Csp4 [R]. Department of Civil & Environmental Engineering, University of California at Davis, California, 1997.
    [24] SEED H B, WONG R T, IDRISS I, et al. Moduli and damping factors for dynamic analyses of cohesionless soils [J]. Journal of Geotechnical Engineering, 1986, 112(11): 1016-1032.
    [25] BOULANGER R W, CURRAS C J, KUTTER B L, et al. Seismic soil-pile-structure interaction experiments and analyses [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(9): 750-759.
    [26] Su D. Centrifuge investigation on responses of sand deposit and sand-pile system under multi-directional earthquake loading [D]. Hong Kong University of Science and Technology, 2005.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

梁发云,陈海兵,黄茂松.双向水平地震作用下场地土三维非线性反应分析[J].同济大学学报(自然科学版),2017,45(04):0481~0487

复制
分享
文章指标
  • 点击次数:1913
  • 下载次数: 744
  • HTML阅读次数: 35
  • 引用次数: 0
历史
  • 收稿日期:2016-03-25
  • 最后修改日期:2017-02-14
  • 录用日期:2017-02-08
  • 在线发布日期: 2017-04-28
文章二维码