基于支持向量机的高速公路实时事故风险研判
CSTR:
作者:
作者单位:

同济大学 道路与交通工程教育部重点实验室,同济大学 道路与交通工程教育部重点实验室,同济大学 道路与交通工程教育部重点实验室,同济大学 道路与交通工程教育部重点实验室

中图分类号:

U491

基金项目:

“十二五”国家科技支撑计划(2014BAG01B04)


Support Vector Machines Approach for Predicting Realtime Rearend Crash Risk on Freeways
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [23]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用G60高速公路(上海段)上布设的单组线圈检测器检测的车道级交通流数据对该路段上发生追尾事故可能性进行研究.通过配对案例对照的方法,分别对事故前5~10 min,10~15 min和15~20 min的交通流数据建立了追尾事故实时预测支持向量机模型.结论表明基于事故前5~10 min的交通流数据构建的支持向量机分类器能够有效的对事故进行实时预测,总体事故预测精度为84.85%,误报率为0.33%,该支持向量机分类器具有较高的实用价值,同时也表明了基于单流量检测器的交通流数据对事故进行实时预测的可靠性.

    Abstract:

    The paper aims to study the relationship between rearend crash potential and lanelevel traffic data collected by single pair of loop detectors located on the G60 Freeway in Shanghai, China. The matched casecontrol method with support vector machines was applied to modelling the traffic data of different time slices before the crashes respectively, 5~10minutes, 10~15 minutes and 15~20 minutes before the crash. Results indicate that support vector machines classifiers based on the traffic data of 5~10 minutes before the crashes have the highest crash prediction accuracy of 84.85% and a false alarming rate 0.33%. The model proves to be valid to predict the realtime crash risk, which is helpful in freeway traffic management.

    参考文献
    [1]Wadhwa L C.Vision Zero requires five star road safety system[C].Road Safety Research,Policing and Education Conference,2001.http://acrs.org.au/files/arsrpe/RS010046.pdf.
    [2]孔令旗.高速公路运行车速与道路安全性关系研究[D].上海:同济大学交通运输工程学院,2004.KONG Lingqi.Study on relationship between operating speed and road safety on freeway[D].Shanghai:School of transportation engineering,Tongji University,2004.
    [3]Kwon T M,Parsekar A.Exploring the relationship between freeway speed variance, land changing, and vehicle heterogeneity[C].Proceedings of Transportation Research Board 84th Annual Meeting, January.2005:9-13.
    [4]Oh C,Park S,Ritchie S G.A method for identifying rear-end collision risks using inductive loop detectors[J].Accident Analysis Prevention,2006,38(2):295-301.
    [5]陆斯文.高速公路关键基础驾驶行为建模及行车风险评价研究[D].上海: 同济大学交通运输工程学院,2011.LU Siwen.Study on modeling critical basic driver behavior and evaluating driving risk on freeway[D].Shanghai:School of transportation engineering,Tongji University,2011.
    [6]Madanat S,Liu PC.A Prototype System for Real-Time Incident Likelihood Prediction[C].IDEA Project Final Report(ITS-2).Transportation Research Board of the National Academies Washington D.C.1995.http://ntl.bts.gov/lib/jpodocs/repts_te/4111.pdf.
    [7]Lee C,Saccomanno F,Hellinga B.Analysis of crash precursors on instrumented freeways[J].Transportation Research Record:Journal of the Transportation Research Board.2002,1784(1):1-8.
    [8]Abdel-Aty M,Uddin N,Pande A et al.Predicting freeway crashes from loop detector data by matched case-control logistic regression[J].Transportation Research Record:Journal of the Transportation Research Board.2004,1897(1):88-95.
    [9]Golob T F,Recker W W,Alvarez V M.Freeway safety as a function of traffic flow[J].Accident Analysis and Prevention.2004,36 :933–946.
    [10]Oh J S,Oh C,Ritchie S G et al.Real-time estimation of accident likelihood for safety enhancement[J].Journal of transportation engineering.2005,131(5):358-363.
    [11]Pande A,Abdel-Aty M. Comprehensive analysis of the relationship between real-time traffic surveillance data and rear-end crashes on freeways[J].Transportation Research Record:Journal of the Transportation Research Board.2006,1953(1):31-40.
    [12]Golob T F,Recker W,Pavlis Y.Probabilistic models of freeway safety performance using traffic flow data as predictors[J].Safety Science.2008,46:1306–1333.
    [13]Hossain M,Muromachi Y.A Bayesian network based framework for real-time crash prediction on the basic freeway segments of urban expressways[J].Accident Analysis and Prevention.2012.45:373–381.
    [14]Xu C,Liu P,Wang W et al.Evaluation of the impacts of traffic states on crash risks on freeways[J].Accident Analysis Prevention.2012,47:162-171.
    [15]Ahmed M M,Abdel-Aty M,Yu R.Bayesian Updating Approach for Real-Time Safety Evaluation with Automatic Vehicle Identification Data[J].Transportation Research Record:Journal of the Transportation Research Board.2012,2280(1):60-67.
    [16]Ahmed M,Abdel-Aty M.A data fusion framework for real-time risk assessment on freeways[J].Transportation Research Part C:Emerging Technologies.2013,26:203-213.
    [17]徐铖铖,刘攀,王炜,等.基于判别分析的高速公路交通安全实时评价指标[J].东南大学学报(自然科学版),2012,03:555-559.XU CC,LIU P,WANG W et al.Discriminant analysis based method to develop real-time crash indicator for evaluating freeway safety[J].Journal of Southeast University(Natural Science Edition).2012(03):555-559.
    [18]Shew C,Pande A,Nuworsoo C.Transferability and robustness of real-time freeway crash risk assessment[J].Journal of Safety Research.2013,46:83-90.
    [19]Pande A,Abdel-Aty M,Hsia L.Spatiotemporal Variation of Risk Preceding Crashes on Freeways[J].Transportation Research Record: Journal of the Transportation Research Board.2005,1908:26–36.
    [20]张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,01:36-46.ZHANG Xuegong.Introduction to statistical learning theory and support vector machines[J].ACTA AUTOMATICA SINICA.2000,01:36-46.
    [21]Ghosh M,Chen MH.Bayesian inference for matched case-control studies[J].Sankhya:The Indian Journal of Statistics,Series B,2002,(64):107-127.
    [22]陶新民,刘福荣,杜宝祥.不均衡数据SVM分类算法及其应用[M].哈尔滨: 黑龙江科学技术出版社,2011.TAO XM,LIU FR,DU BX.Imbalanced data SVM classifier algorithm and application[M].Harbin:Heilongjiang Science Technology Press,2011.
    [23]Chawla N V,Bowyer K W,Hall L O et al.SMOTE:synthetic minority over-sampling technique[J].Journal of artificial intelligence research,2002:321-357.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

游锦明,王俊骅,唐棠,方守恩.基于支持向量机的高速公路实时事故风险研判[J].同济大学学报(自然科学版),2017,45(03):0355~0361

复制
分享
文章指标
  • 点击次数:1942
  • 下载次数: 839
  • HTML阅读次数: 21
  • 引用次数: 0
历史
  • 收稿日期:2016-03-29
  • 最后修改日期:2017-01-02
  • 录用日期:2016-12-09
  • 在线发布日期: 2017-04-01
文章二维码