停车场泊位占有率预测方法评价
CSTR:
作者:
作者单位:

同济大学

中图分类号:

U491.1

基金项目:

国家“十二五”科技支撑计划(2014BAG03B02)


Evaluation of Prediction Methods for Parking Occupancy Rate
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [24]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用上海市五角场地区的停车泊位检测数据,分析了商业、办公和体育场3种不同类型停车场泊位占有率(parking occupancy rate,POR)的时变特征,并评价了ARIMA(autoregressive integrated moving average)、卡尔曼滤波和BP(back propagation)神经网络等3种常用方法在POR预测中的适用性.结果表明,ARIMA和BP神经网络的预测精度总体优于卡尔曼滤波,BP神经网络在商业和办公停车场的短时预测中有较好的精度;3种方法的预测精度均随预测时间步长的增加而逐渐降低;不同类型停车场的POR预测精度存在较大差异,工作日的预测精度一般高于非工作日,且模型具有较好的自适应性.

    Abstract:

    This paper analyzed temporary characteristics of parking occupancy rate (POR) at three different types of parking lots, i.e., shopping mall, office building and stadium, and evaluated the applicability of autoregressive integrated moving average method(ARIMA), Kalman filter and BP neural networks on the prediction of POR, based on parking lot detection data at Wujiaochang District, Shanghai. The results show that ARIMA and BP neural networks can achieve higher prediction accuracies as compared with the Kalman filter method, and the BP neural networks performs best for the shortterm prediction of shopping mall and office building. The prediction accuracy of the three methods decreases as the forecasting time step increases. Different prediction accuracies exist for different types of parking lots, and the prediction accuracy for weekdays is higher than that for weekends. And the model has good adaptability. This paper can provide reference for the selection of prediction methods for different types of parking lots.

    参考文献
    [1] Shoup D C. Cruising for parking[J]. Transport Policy, 2006, 13(6): 479-486.
    [2] Teng, Hualiang (Herry), Falcocchio, et al. Parking difficulty and parking information needs for off-street spaces in the CBD[C]//Transportation Research Board 80th Annual Meeting. Washington D C, 2001.
    [3] 郭树明. 智能停车场管理系统中车位信息预测子系统的设计与实现[D]. 吉林大学, 2012.
    GUO Shuming. Design and implementation of parking information forecasting subsystem in intelligent parking management system[D]. Jilin University, 2012.
    [4] Blythe P T. Forecasting available parking space with largest Lyapunov exponents method[J]. Journal of Central South University, 2014, 21(4): 1624-1632.
    [5] Tamrazian A, Qian Z S, Rajagopal R. Where is my parking spot? on-line and off-line prediction of time-varying parking occupancy[C]//Transportation Research Board 94th Annual Meeting. Washington D C, 2015.
    [6] Liu S, Guan H, Yan H, et al. Unoccupied parking space prediction of chaotic time series[J]. ICCTP, 2010: 2122-2131.
    [7] Richter F, Di Martino S, Mattfeld D C. Temporal and spatial clustering for a parking prediction service[C]//Tools with Artificial Intelligence (ICTAI), 2014 IEEE 26th International Conference on. IEEE, 2014: 278-282.
    [8] 李祎, 孙静怡, 张旭东. 城市停车状况的模糊聚类分析[J]. 昆明理工大学学报: 理工版, 2008, 33(2): 62-66.
    LI yi, SUN Jingyi, ZHANG Xudong. Fuzzy cluster analysis of city parking status[J]. Journal of Kunming University of Science and Technology: Science and Technology, 2008, 33(2): 62-66.
    [9] 熊志斌. 基于ARIMA与神经网络集成的GDP时间序列预测研究[J]. 数理统计与管理, 2011, 30(2): 306-314.
    XIONG Zhibin. Research on GDP time series forecasting based on integrating ARIMA with neural networks[J]. Journal of Applied Statistics and Management, 2011, 30(2): 306-314.
    [10]Vlahogianni E I, Golias J C, Karlaftis M G. Short‐term traffic forecasting: Overview of objectives and methods[J]. Transport reviews, 2004, 24(5): 533-557.
    Dunning A E. Method and system for projecting dynamic parking availability based on an ongoing survey for remote lots with high demand: U.S. Patent 7,049,979[P]. 2006-5-23.
    [12]Rajabioun T, Ioannou P. On-street and off-street parking availability prediction using multivariate spatiotemporal models[J]. Intelligent Transportation Systems, IEEE Transactions on, 2015, 16(5): 2913-2924.
    [13]Okutani I, Stephanedes Y J. Dynamic prediction of traffic volume through Kalman filtering theory[J]. Transportation Research Part B: Methodological, 1984, 18(1): 1-11.
    [14]Ji H, Xu A, Sui X, et al. The applied research of Kalman in the dynamic travel time prediction[C]//Geoinformatics, 2010 18th International Conference on. IEEE, 2010: 1-5.
    [15]Yang Z, Liu H, Wang X. The research on the key technologies for improving efficiency of parking guidance system[C]//Intelligent Transportation Systems, 2003. Proceedings. 2003 IEEE. IEEE, 2003, 2: 1177-1182.
    [16]Sun Yong, Liu Chunping, Wang Yihuai, et al. A Forecasting Model for Parking Guidance System[C]//Computer Science and Information Engineering, 2009 WRI World Congress on. IEEE, 2009, 3: 607-611.
    [17]Vlahogianni E I, Kepaptsoglou K, Tsetsos V, et al. A real-time parking prediction system for smart cities[J]. Journal of Intelligent Transportation Systems, 2015: 1-13.
    [18]Ji Y, Tang D, Blythe P, et al. Short-term forecasting of available parking space using wavelet neural network model[J]. Intelligent Transport Systems, IET, 2015, 9(2): 202-209.
    [19]潘迪夫, 刘辉, 李燕飞. 基于时间序列分析和卡尔曼滤波算法的风电场风速预测优化模型[J]. 电网技术, 2008, 32(7): 82-86.
    PAN Difu, LIU Hui, LI Yanfei. A wind speed forecasting optimization model for wind farms based on time series analysis and Kalman Filter algorithm[J]. Power System Technology, 2008, 32(7): 82-86.
    [20]Fadare D A. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria[J]. Applied Energy, 2010, 87(3): 934-942.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

唐克双,郝兆康,衣谢博闻,刘冰清.停车场泊位占有率预测方法评价[J].同济大学学报(自然科学版),2017,45(04):0533~0543

复制
分享
文章指标
  • 点击次数:2634
  • 下载次数: 982
  • HTML阅读次数: 51
  • 引用次数: 0
历史
  • 收稿日期:2016-04-30
  • 最后修改日期:2016-10-14
  • 录用日期:2016-12-26
  • 在线发布日期: 2017-04-28
文章二维码