基于驾驶人视觉感知的低等级公路行车速度预测
CSTR:
作者:
作者单位:

同济大学道路与交通工程教育部重点实验室 同济大学交通运输工程学院,同济大学道路与交通工程教育部重点实验室 同济大学交通运输工程学院,道路与交通工程教育部重点实验室

中图分类号:

U412.36+6

基金项目:

国家科技支撑计划课题(2014BAG01B06)


Driving Speed Prediction Method for Lowgrade Highways from Drivers’ Visual Perception
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [12]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    低等级公路环境下的行车速度变化特征比较复杂,已有的基于几何线形指标的车速模型不足以全面地表述这种特征.通过大量实车实验发现,低等级公路环境下驾驶人所采用的行车速度和其视觉感知到道路条件之间存在很好的相关性.驾驶人感知的道路条件分为视觉车道信息和视觉路侧环境信息.采用CatmullRom样条曲线拟合的视觉车道模型能够反应驾驶人感知的低等级公路几何特征,根据视觉车道模型形状参数,使用遗传算法优化BP神经网络(GABP)建立了基于几何信息感知的几何车速模型.同时,基于路侧环境信息利用Logistic回归模型建立了路侧车速修正模型.将上述模型结合起来,形成了基于驾驶人视觉感知的低等级公路行车车速预测方法.由此方法计算的驾驶人行车速度与实测情况吻合性好,能够很好地描述驾驶人在低等级公路环境下通过对道路条件视觉认知而产生行车速度的行为特征,是低等级公路运行车速预测计算的一种有效方法,不仅可以作为道路安全评价的基础,也可以为基于行车速度的公路几何设计提供有力支持.

    Abstract:

    Variation characteristics of the driving speed are relatively complicated on lowgrade highways, so that the current speed calculation models based only on geometric alignment indexes cannot depict these features comprehensively. According to numerous real vehicle experiments, it can be found that there is a good correlation between the driving speed and road conditions perceived by drivers’ vision. These road conditions are divided into the drivers’ visual lane information and visual roadside information. The drivers’ visual lane model fitted by the CatmullRom spline could represent the geometric characteristics of lowgrade highways obtained from drivers’ perception. The backpropagation neural network optimized by the genetic algorithm (GABP) was used to establish the geometric speed model based on the shape parameters of the drivers’ visual lane model. Meanwhile, the roadside driving speed correction model was presented by the logistic regression model on the basis of roadside information. These models were combined to form a lowgrade highway driving speed prediction method from drivers’ visual perception. The driving speed computed with this method agrees well with the measured data, which can well describe the behavioral characteristics that drivers determine driving speeds through their visual perception in the lowgrade highway environment. It is an effective method for the driving speed forecast calculation on lowgrade highways, which can not only serve as a basis for the evaluation of road safety, but also provide a strong support for the highway geometric design based on the driving speed.

    参考文献
    [1]孔令旗,郭忠印. 基于人工神经网络的运行车速与道路安全性关系[J]. 同济大学学报(自然科学版),2007,09:1214-1218.KONG Lingqi, GUO Zhongyin. Artificial Neural Network-Based Relation of Operating Speed and Road Safety[J]. Journal of Tongji University: Natural Science, 2007,09:1214- 1218.
    [2]高建平,郭忠印. 基于运行车速的公路线形设计质量评价[J]. 同济大学学报(自然科学版),2004,07:906-911.GAO Jianping, GUO Zhongyin. Evaluation of Highway Alignment Design Quality Based on Operating Speed[J]. Journal of Tongji University: Natural Science, 2004,07:906-911.
    [3]杨少伟,许金良,李伟,陈军. 路线设计中车辆行驶速度预测模型[J]. 长安大学学报(自然科学版),2003,03:53-55.YANG Shaowei, XU Jinliang, LI Wei, CHEN Jun. Prediction model of vehicle speed for highway route design[J]. Journal of Chang’an University: Natural Science, 2003, 03:53-55.
    [4]Bonneson J, Pratt M. Model for predicting speed along horizontal curves on two-lane highways[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009 (2092): 19-27.
    [5]Fitzpatrick K, Collins J. Speed-profile model for two-lane rural highways[J]. Transportation Research Record: Journal of the Transportation Research Board, 2000 (1737): 42-49.
    [6]Hassan Y, Sarhan M. Operational effects of drivers’ misperception of horizontal curvature[J]. Journal of Transportation Engineering, 2012, 138(11): 1314-1320.
    [7]潘兵宏,赵一飞,梁孝忠. 动视觉原理在公路线形设计中的应用[J]. 长安大学学报(自然科学版),2004,06:20-24.PAN Binghong, ZHAO Yifei, LIANG Xiaozhong. Application of dynamic vision theory in highway alignment design[J]. Journal of Chang’an University: Natural Science: 2004, 06:20-24.
    [8]杨志清,郭忠印,杜晓丽. 基于视觉信息的高速公路运行车速预测模型[J]. 同济大学学报(自然科学版),2007,07:929-934.YANG Zhiqing,GUO Zhongyin,DU Xiaoli. Visual Information-Based Freeway Operating Speed Prediction Model[J]. Journal of Tongji University: Natural Science, 2007,07:929-934.
    [9]陈雨人,余博,贺思虹. 基于视觉感知偏差的公路几何平纵协调性分析技术[J]. 同济大学学报(自然科学版),2015,09:1347-1354.CHEN Yuren, YU Bo, HE Sihong. Coordination between Highway Horizontal and Vertical Alignments based on Driver's Visual Perception Deviation[J]. Journal of Tongji University: Natural Science, 2015,09:1347-1354.
    [10]陈雨人,王瑞云,董永杰,贺思虹. 应用CatMull-Rom样条曲线描述道路透视图中心线特征的方法研究[J]. 重庆交通大学学报(自然科学版),2015,04:45-51 112.Chen Yuren;Wang Ruiyun;Dong Yongjie. Methods about Using CatMull-Rom Spline to Describe Characteristics of Road Centerline in Perspective View[J]. Journal of Chongqing Jiaotong University: Natural Science, 2015,04:45-51 112.
    [11]Kamarianakis Y, Prastacos P. Forecasting traffic flow conditions in an urban network: comparison of multivariate and univariate approaches[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003 (1857): 74-84.
    [12]刘安业,王要武,张磊. 基于BP神经网络的道路交通事故多发点鉴别新方法[J]. 土木工程学报,2008,06:108-111.Liu Anye, Wang Yaowu, Zhang Lei. New Method for Identifying Road Traffic Accident-prone Locations Based on BP Neural Network[J]. China Civil Engineering Journal, 2008,06:108-111.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

余博,陈雨人,付云天.基于驾驶人视觉感知的低等级公路行车速度预测[J].同济大学学报(自然科学版),2017,45(03):0362~0368

复制
分享
文章指标
  • 点击次数:1964
  • 下载次数: 839
  • HTML阅读次数: 29
  • 引用次数: 0
历史
  • 收稿日期:2016-06-01
  • 最后修改日期:2016-12-28
  • 录用日期:2016-12-09
  • 在线发布日期: 2017-04-01
文章二维码