两步模系矩阵分裂算法求解弱非线性互补问题
CSTR:
作者:
作者单位:

同济大学数学系,同济大学数学系

中图分类号:

O241.8

基金项目:

国家自然科学基金项目(11271289)


Twostep Modulusbased Matrix Splitting Algorithms for Weakly Nonlinear Complementarity Problems
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    考虑两步模系矩阵分裂算法求解弱非线性互补问题, 理论分析给出了当系数矩阵为正定矩阵或H+矩阵时迭代法的收敛性质和两步模系超松弛迭代法的参数选取范围. 数值实验表明, 两步模系矩阵分裂算法是行之有效的, 并在迭代步数和迭代时间上均优于模系矩阵分裂算法.

    Abstract:

    wostep modulusbased matrix splitting algorithms are proposed to solve weakly nonlinear complementarity problems. Convergence theory is established when the system matrix is either positive definite or an H+matrix. Moreover, the choice of the parameters for twostep modulusbased successive overrelaxation methods is also discussed. Numerical experiments show that the proposed methods are efficient and better than the modulusbased matrix splitting methods in aspects of iteration steps and CPU time.

    参考文献
    [1] Huang N, Ma C F. The modulus-based matrix splitting algorithms for a class of weakly nonlinearcomplementarity problems [J]. Numerical Linear Algebra with Applications, 2016, 23: 558-569.
    [2] Ferris MC, Pang JS. Engineering and economic applications of complementarity problems. SIAM Review, 1997, 39:669–713.
    [3] Cottle R W, Pang J S, Stone R E. The Linear Complementarity Problem [M]. Academic Press, San Diego, 2009.
    [4] Bai Z Z. Modulus-based matrix splitting iteration methods for linear complementarity problems [J]. Numerical Linear Algebra with Applications, 2010, 17: 917-933.
    [5] Zhang L L. Two-step modulus-based matrix splitting iteration method for linear complementarity problems [J]. Numerical Algorithms, 2011, 57: 83-99.
    [6] Li W. A general modulus-based matrix splitting method for linear complementarity problems of -matrices [J]. Applied Mathematics Letters. 2013, 26: 1159-1164.
    [7] Xu W W. Modified modulus-based matrix splitting iteration methods for linear complementarity problems [J]. Numerical Linear Algebra with Applications, 2015, 22: 748-760.
    [8] Zheng N, Yin J F. Accelerated modulus-based matrix splitting iteration methods for linear complementarity problems [J]. Numerical Algorithms, 2013, 64: 245-261.
    [9] Zheng N, Yin J F. Convergence of accelerated modulus-based matrix splitting iteration methods for linear complementarity problem with an -matrix [J]. Journal of Computational and Appllied Mathematics, 2014, 260: 281-293.
    [10] Bai Z Z, Zhang L L. Modulus-based synchronous multisplitting iteration methods for linear complementarity problems [J]. Numerical Linear Algebra with Applications, 2013, 20: 425-439.
    [11] 张丽丽. 关于线性互补问题的模系矩阵分裂迭代方法[J]. 计算数学, 2012, 34(4): 373-386.Zhang L L. On modulus-based matrix splitting iteration methods for linear complementarity problems [J]. Mathematic Numerica Sinica, 2012, 34(4): 373-386.
    [12] 黎稳, 郑华. 线性互补问题的数值分析 [J]. 华南师范大学学报, 2015, 47(3): 1-9.Li W, Zheng H. Numerical analysis on linear complementarity problems [J]. Journal of South China Normal University, 2015, 47(3): 1-9.
    [13] Xia Z C, Li C L. Modulus-based matrix splitting iteration methods for a class of nonlinear complementarity problem [J], Applied Mathematics and Computation, 2015, 271: 34-42.
    [14] Xie S L, Xu X R, Zeng J P. Two-step modulus-based matrix splitting iteration method for a class of nonlinear complementarity problems [J], Linear Algebra and its Applications, 2016, 494: 1-10.
    [15] Noor M A. Fixed point approach for complementarity problems [J], Journal of Mathematical Analysis and Applications, 1988, 133: 437-448.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李蕊,殷俊锋.两步模系矩阵分裂算法求解弱非线性互补问题[J].同济大学学报(自然科学版),2017,45(02):0296~0301

复制
分享
文章指标
  • 点击次数:1357
  • 下载次数: 1031
  • HTML阅读次数: 32
  • 引用次数: 0
历史
  • 收稿日期:2016-06-14
  • 最后修改日期:2016-11-23
  • 录用日期:2016-10-09
  • 在线发布日期: 2017-03-07
文章二维码