基于多层中轴点拟合的古塔变形检测
CSTR:
作者:
作者单位:

同济大学 测绘与地理信息学院,同济大学 测绘与地理信息学院,同济大学 测绘与地理信息学院,同济大学 测绘与地理信息学院

中图分类号:

TU196

基金项目:

中央高校基本科研业务费专项资金资助第一作者:刘世杰(1982-),男,工学博士,讲师,主要研究方向为摄影测量与遥感及其应用.E-mail:liusjtj@tongji.edu.cn通信作者:王穗辉(1962-),女,工学博士,副教授,主要研究方向为测量数据处理与分析.E-mail:wsh@tongji.edu.cn *,童小华


Deformation Detection and Estimation of Pagoda Based on Multilayer Central Points’ Fitting
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [10]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    提出一种新的古塔倾斜测量及质量评价方法.针对古塔层层收分、斗拱檐口及棱角模糊导致变形测量特征点难以确定的问题,提出利用圆拟合的方法确定古塔各层中轴点.在古塔中心轴线拟合中,引入整体最小二乘法进行平差解算,克服了系数矩阵存在误差的问题.除计算古塔整体倾斜度,还计算各层倾斜度和扭曲度以反映古塔的详细变形情况.相比传统的简单利用塔顶和基座的相对位移和塔高来计算古塔倾斜的变形检测方法,采用多层中轴点拟合的检测方法更加准确和详细地反映了古塔的变形.

    Abstract:

    This paper presents a practical novel approach for tilt measurement of ancient pagodas and the criterion quality evaluation. Due to the characteristics (multieaves, dougong and vague edges) of ancient pagodas, it is difficult to select measurement points. The coordinates of the central point of each floor of the ancient pagoda structure is estimated by using the method of ellipse fitting. During the process of fitting space axis of the pagoda, the method of total least square is applied to calculate the result. Besides the inclination and twist of each floor is calculated in order to assess the quality of the pagoda in a comprehensive way. This method is more accurate and detailed than the current tilt measurement method which determines the deformation and inclination of tower structures by the ratio of relative displacement of the tower’s base and top and the height of the tower.

    参考文献
    [1]梁海奎.古塔变形测量方法探讨[J].城市勘测,2011,(3):113~-1145.LIANG Haikui.The Discussion of Monitoring Ancient Buddhist Pagoda Deformation[J].Urban Geotechnical Investigation Surveying, 2011, (3): 113~-1145.
    [2]黄强.古塔变形监测探讨[J].2013(6):218~-220.HUANG Qiang.Discussion on Deformation Monitoring of Old Towers[J].2013(6):218~-220
    [3]王穗辉.误差理论与测量平差[M].上海:同济大学出版社,2010.Wang Suihui.Error Theory and Surveying Adjusting[M].ShangHai: Tongji University Press,2010.
    [4]王安怡,陶本藻. 顾及自变量误差的回归分析理论和方法[J] .勘测科学,2005.Wang Anyi,Tao Benzao, Theory and Method of Regression Analysis for Error of Independent Variable[J].Site Investigation Science And Techonology,2005.
    [5]鲁铁定,陶本藻,周世健.基于整体最小二乘法的线性回归建模和解法[J].武汉大学学报:信息科学版, 2008, 33(5):504~507.LU Tieding,TAOBenzao,ZHOUShijian.Modeling and algorithm of linear regression based on total least squares[J].Geomatics and Information Science of Wuhan University,2008,33(5):504~507.
    [6]Xu P L,Liu J N,ShiC.Total least squares adjustment in partial errors-in-variables model:algorithm and statistical analysis[J].Journal of Geodesy,2012,86(8):661.
    [7]Ryan A G,Montgomery D C,Peck E A,etal.Introduction to linear regression analysis,solutions manual to accompany[M].5th ed.Hoboken:Wiley,2013.
    [8]Chen C T. Linear System Theory and Design[M]. New York: Holt Rinehart and Winston, 1984.
    [9]Kailath T., Sayed A H., and Hassibi B. Linear Estimation[M]. New Jersey:Prentice-Hall,Inc.2000.
    [10]Koch K R.Parameter estimation and hypothesis testing in linear models[M].2nd Berlin/ Heidelberg/New York:Springer,1999.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

刘世杰,郭成成,王穗辉,童小华.基于多层中轴点拟合的古塔变形检测[J].同济大学学报(自然科学版),2018,46(03):0401~0405

复制
分享
文章指标
  • 点击次数:1317
  • 下载次数: 1098
  • HTML阅读次数: 499
  • 引用次数: 0
历史
  • 收稿日期:2016-06-28
  • 最后修改日期:2017-10-20
  • 录用日期:2018-01-10
  • 在线发布日期: 2018-03-27
文章二维码