钢材应变硬化与应变率效应的试验
CSTR:
作者:
作者单位:

同济大学建筑工程系,同济大学,同济大学

中图分类号:

TU391

基金项目:

国家自然科学基金资助项目(51378381).


Experimental Study on Strain Hardening and Strain Rate Effect of Q420 Steel
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [22]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    利用INSTRON拉伸试验机和Zwick/Roell HTM5020型高速拉伸试验机对Q420钢材开展了不同应变率下(0.001~288 s-1)的单轴拉伸试验,研究应变率效应对钢材力学性能的影响.试验结果表明,Q420钢为应变率敏感型材料,其硬化特征随应变率的提高而变化.采用ANSYS中LSDYNA模块对静力和动力拉伸试验进行仿真模拟,通过逆向反推的方式获得了Q420钢颈缩后的真实应力应变曲线.仿真结果显示,Q420钢材的真实应力应变关系随着应变率的提高,从幂次型的Ludwik准则向指数型的Voce准则转化.为得到更优的动本构模型,在H/VR本构模型中引入新的应变率准则,以CowperSymonds模型中的钢材动力放大系数代替H/VR本构模型中的线性Wagoner应变率准则.结果显示,修正H/VR本构模型很好地吻合了试验数据,准确反映了大应变状态下的应变硬化特征和应变率对应变硬化的影响.

    Abstract:

    Uniaxial tensile tests of Q420 steel at different strain rates (0.001288 s-1) were carried out to study strain rate effect on mechanical properties by INSTRON and Zwick/Roell HTM5020 testing machine. The experimental results show that Q420 steel is sensitive to strain rates, with strain hardening characteristic changing along strain rates. Finite element (FE) modeling of these tensile tests is developed to reversely extrapolate the true stressstrain relationship of Q420 steel beyond necking, using LSDYNA of ANSYS. The simulation results show that the true stressstrain relationships of Q420 steel transform from powerlaw Ludwik model to exponential Voce model with the increasing strain rate. To get a fine dynamic constitutive model, a modified H/VR model is established by introducing a new strain rate sensitivity function into the H/VR constitutive model, where Wagoner rate law is replaced by the dynamic increase factor of the CowperSymonds model. The results show that the modified H/V–R model fits the experimental data well and captures strain hardening at high strain accurately as well as the variation of strain hardening with strain rate.

    参考文献
    [1] Elsanadedy H M, Almusallam T H, Alharbi Y R, et al. Progressive Collapse Potential of a Typical Steel Building Due to Blast Attacks[J]. Journal of Constructional Steel Research, 2014, 101:143-157.
    [2] Bintu A, Vincze G, Picu C R, et al. Strain Hardening Rate Sensitivity and Strain Rate Sensitivity in Twip Steels[J]. Materials Science and Engineering: A, 2015, 629:54-59.
    [3] Cao Y, Karlsson B, Ahlstr?m J. Temperature and Strain Rate Effects On the Mechanical Behavior of Dual Phase Steel[J]. Materials Science and Engineering: A, 2015, 636:124-132.
    [4] Verleysen P, Peirs J, Van Slycken J, et al. Effect of Strain Rate On the Forming Behaviour of Sheet Metals[J]. Journal of Materials Processing Technology, 2011, 211(8):1457-1464.
    [5] Forni D, Chiaia B, Cadoni E. Strain Rate Behaviour in Tension of S355 Steel: Base for Progressive Collapse Analysis[J]. Engineering Structures, 2016, 119:164-173.
    [6] 陈俊岭, 李哲旭, 舒文雅, 等. 不同应变率下Q345钢材力学性能试验研究[J]. 东南大学学报(自然科学版), 2015(06):1145-1150.
    [7] 李婧, 赵德文, 刘相华. Q420钢热变形行为及流变应力模型研究[J]. 东北大学学报(自然科学版), 2010(02):202-206.
    [8] 施刚, 姜雪, 周文静, 等. Q420焊接圆钢管轴心受压稳定性能试验和设计方法研究[J]. 工程力学, 2015(02):64-73.
    [9] 中国国家标准化管理委员会. GB/T 228.1—2010 金属材料拉伸试验第1部分: 室温试验方法[S]. 北京: 中国标准出版社, 2011.
    [10] The International Organization for Standardization. ISO 26203-2 Metallic material-tensile testing at high strain rates—part2: servo-hydraulic and other test systems [S]. Switzerland: The International Organization for Standardization, 2011.
    [11] Wood K C, Schley C A, Williams M, et al. A method to calibrate a specimen with strain gauges to measure force over the full-force range in high rate testing [C]//DYMAT-International Conference on the Mechanical and Physical Behavior of Materials under Dynamic Loading. Brussels, Belgium, 2009: 265-273.
    [12] Cowper G R, Symonds P S. Strain-Hardening and Strain-Rate Effects in the Impact Loading of Cantilever Beams[R]. Providence, RI, USA: Brown University, 1957.
    [13] 朱俊儿, 曾龙, 马令晨, 等. 一种针对颈缩现象的高强钢板材力学行为研究方法[C]//中国汽车工程学会第十六届汽车安全技术学术会议论文集. 杭州:2013:282-293.
    [14] Ludwik P. Elemente der technologischen Mechanik [M]. Berlin: Springer-Verlag, 1909.
    [15] Voce E. The Relationship Between Stress and Strain for Homogeneous Deformation[J]. Journal of the Institute Metals, 1948:74-537.
    [16] Yasnikov I S, Vinogradov A, Estrin Y. Revisiting the Considère Criterion From the Viewpoint of Dislocation Theory Fundamentals[J]. Scripta Materialia, 2014, 76:37-40.
    [17] Johnson G R, Cook W H. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]// Proceedings of the 7th International Symposium on Ballistics. The Hague, Netherlands, 1983:541-547.
    [18] Rusinek A, Zaera R, Klepaczko J R. Constitutive Relations in 3-D for a Wide Range of Strain Rates and Temperatures-Application to Mild Steels[J]. International Journal of Solids and Structures, 2007, 44(17):5611-5634.
    [19] Khan A S, Liang R. Behaviors of Three Bcc Metal Over a Wide Range of Strain Rates and Temperatures: Experiments and Modeling[J]. International Journal of Plasticity, 1999, 15(10):1089-1109.
    [20] Hollomon, J H. Tensile Deformation[J]. Transactions of AIME, 1945, 162:268–290.
    [21] Sung J H, Kim J H, Wagoner R H. A Plastic Constitutive Equation Incorporating Strain, Strain-Rate, and Temperature[J]. International Journal of Plasticity, 2010, 26(12):1746-1771.
    [22] Kim J, Kim D, Han H N, et al. Strain Rate Dependent Tensile Behavior of Advanced High Strength Steels: Experiment and Constitutive Modeling[J]. Materials Science and Engineering: A, 2013, 559:222-231.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈俊岭,李金威,李哲旭.钢材应变硬化与应变率效应的试验[J].同济大学学报(自然科学版),2017,45(02):0180~0187

复制
分享
文章指标
  • 点击次数:3446
  • 下载次数: 1163
  • HTML阅读次数: 58
  • 引用次数: 0
历史
  • 收稿日期:2016-07-21
  • 最后修改日期:2016-10-20
  • 录用日期:2017-02-08
  • 在线发布日期: 2017-03-07
文章二维码