既有空间结构位形推算的随机偏差方法
CSTR:
作者:
作者单位:

同济大学土木工程学院,上海200092,同济大学土木工程学院,上海200092

中图分类号:

TU393.3

基金项目:

国家自然科学基金项目


Stochastic Deviation Method of Reckoning Geometric Shapes of Existing Spatial Structures
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    根据未测节点空间位置的不确定性和随机分布特性,提出了结构位形推算的随机偏差方法.结合空间结构特点,给出随机偏差方法的抽样测点选取原则和最小样本容量确定方法.基于概率论及数理统计理论,给出随机偏差方法的偏差分布推断方法.引入先验信息概念,基于贝叶斯统计理论,给出有先验信息条件下的参数推断方法.对实际网壳结构采用该随机偏差方法推算结构实际位形,并进行整体稳定性分析,结果表明基于随机偏差方法的鉴定分析结果更符合实际.

    Abstract:

    According to the uncertainty and the inherent randomness of unmeasured nodal positions, a stochastic deviation method (SDM) was proposed to reckon the geometric shapes of existing spatial structures. In a consideration of the characteristics of spatial structures, the sampling principle and the minimum sample size calculation approach in SDM were given. Based on the probability and the statistics theory, the procedure for inferring the random fields of nodal position deviations was built. In addition, the prior information concept was introduced into SDM, and approaches for inferring the stochastic parameters with prior information were put forward based on the Bayesian statistics theory. Finally, the proposed SDM was adopted to reckon the geometric shape of reticulated shell structures, and the nonlinear static stability analysis was carried out using SDMdetermined structural spatial positions. It is shown that SDM can give realistic results and be used for the appraisal of existing spatial structures.

    参考文献
    罗永峰. 国家标准《高耸与复杂钢结构检测与鉴定技术标准》编制简介[J]. 钢结构, 2014, 29(4):44-49.
    GB 51008-2016 高耸与复杂钢结构检测与鉴定标准[S]. 北京, 2016.
    DG/TJ 08-2011-2007钢结构检测与鉴定技术规程[S]. 上海, 2007.
    IOS 13822-2010 Bases for design of structures – Assessment of existing structures[S]. Switzerland, 2010.
    罗立胜, 罗永峰, 郭小农. 考虑节点几何位置偏差的既有网壳结构稳定计算方法[J]. 湖南大学学报(自然科学版), 2013, 40(03):26-30.
    刘慧娟, 罗永峰, 杨绿峰, 等. 单层网壳结构稳定性分析的随机缺陷模态迭加法[J]. 同济大学学报(自然科学版), 2012, 40(9):1294-1299.
    Arregui-Mena J D, Margetts L, Mummery P M. Practical application of the stochastic finite element method[J]. Archives of Computational Methods in Engineering, 2016, 23(1):171-190.
    沈士钊, 陈昕. 网壳结构稳定性[M]. 北京: 科学出版社, 1999.
    Lima M D C S, Cordeiro G M, Ortega E M M. A new extension of the normal distribution[J]. Journal of Data Science, 2015. 13:385-408.
    CHEN Gengbo, ZHANG Hao, KIM J.R.Rasmussen, et al. Modeling geometric imperfections for reticulated shell structures using random field theory[J]. Engineering Structures, 2016, 126:481-489.
    唐敢, 黎德琳, 赵才其, 等. 空间结构初始几何缺陷分布规律的实测数据及统计参数[J]. 建筑结构, 2008, 38(02):74-78.
    刘学春, 张爱林, 葛家琪, 等. 施工偏差随机分布对弦支穹顶结构整体稳定性影响的研究[J]. 建筑结构学报, 2007, 28(06):76-82.
    Bruno L, Sassone M, Venuti F. Effects of the equivalent geometric nodal imperfections on the stability of single layer grid shells[J]. Engineering Structures, 2016, 112:184-199.
    Degroot M H, Schervish M J. Probability and statistics[M]. New Jersey: Addison-Wesley, 2011.
    陈希孺. 高等数理统计学[M]. 合肥: 中国科学技术大学出版社, 2009.
    Puga J L, Krzywinski M, Altman N. Points of significance: Bayesian statistics[J]. Nature Methods, 2015, 12(5):377-378.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

罗永峰,刘俊.既有空间结构位形推算的随机偏差方法[J].同济大学学报(自然科学版),2017,45(06):0791~0798

复制
分享
文章指标
  • 点击次数:3626
  • 下载次数: 1270
  • HTML阅读次数: 811
  • 引用次数: 0
历史
  • 收稿日期:2016-08-21
  • 最后修改日期:2017-04-04
  • 录用日期:2017-02-08
  • 在线发布日期: 2017-06-16
文章二维码