组合梁几何非线性与长期效应的同步算法
CSTR:
作者:
作者单位:

同济大学

中图分类号:

U448.27

基金项目:

“九七三”国家重点基础研究发展计划(2013CB03603)


Algorithm of Composite Beam Synchronously Considering Geometrical Nonlinearity and Long Term Effects
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [10]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    首先根据建立的随转坐标系下考虑滑移组合梁单元平衡方程,结合初应变法得到组合梁收缩徐变等效节点力有限元列式.然后基于随转列式全量法,利用总体坐标系与随转坐标系下变量间转换矩阵,获得界面滑移平面组合梁单元收缩徐变与几何非线性同步考虑的实用算法.该方法的优点是可实现几何非线性与收缩徐变材料非线性算法上的分离,收缩徐变仅在随转坐标系下考虑,几何非线性通过转换矩阵考虑.最后,结合算例说明考虑滑移的组合梁几何非线性与收缩徐变之间存在着耦合作用.

    Abstract:

    Firstly, balance equation of composite beam element with interlayer slips under corotational coordinate system was deduced. Combining initial strain method,equivalent nodal force formulation of shrinkage and creep was obtained. Based on the corotational method, using the transformation matrices relating local and global quantities, a practical algorithm for analysis of composite beam with interlayer slips considering geometric nonlinearity, concrete shrinkage and creep synchronously was put forward. The advantage of this approach is that it leads to the separation of geometrical and material nonlinearities such as shrinkage and creep. The shrinkage and creep is only present at the level of the local element, whereas the geometrical nonlinearity is included in the transformation matrices. Finally, it was illustrated that the geometric nonlinearity is coupled with shrinkage and creep for composite beam with interlayer slip by an example.

    参考文献
    [1] Ranzi G, Dall'Asta A, Ragni L, et al. A geometric nonlinear model for composite beams with partial interaction[J]. Engineering Structures. 2010, 32: 1384-1396.
    [2] Battini J, Nguyen Q, Hjiaj M. Non-linear finite element analysis of composite beams with interlayer slips[J]. Computers and Structures. 2009, 87: 904-912.
    [3] Dezi B L, Ianni C, Tarantino A M. Simplified creep analysis of composite beams with flexible connectors[J]. Journal of Structural Engineering. 1993, 119(5): 1484-1497.
    [4] Jurkiewiez B, Buzon S, Sieffert J G. Incremental viscoelastic analysis of composite beams with partial interaction[J]. Computers and Structures. 2005, 83: 1780-1791.
    [5] 邓继华,邵旭东,彭建新.几何非线性平面梁考虑收缩徐变的算法研究[J].湖南大学学报(自然科学版). 2014, 41(9): 14-19.Deng Ji-hua,Shao Xu-dong,Peng Jian-xin. Algorithm study of the geometrica1 nonlinearity plane beam considering creep and shrinkag[J]. Journal of Hunan University(Natura1 Sciences). 2014, 41(9): 14-19.
    [6] Ranzi G, Gara F, Leoni G, et al. Analysis of composite beams with partial shear interaction using available modelling techniques:a comparative study[J]. Computers and Structures. 2006, 84: 930-941.
    [7] Asta A D, Zona A. Slip locking in finite elements for composite beams with deformable shear connection[J]. Finite Elements in Analysis and Design. 2004, 40: 1907-1930.
    [8] 梁鹏. 超大跨度斜拉桥几何非线性及随机模拟分析[D]. 上海:同济大学. 2004.Liang Pen. Geometrical nonlinearity and random simulation of super long span cable-stayed bridges[D]. Shanghai: Tongji University. 2004.
    [9] 颜东煌,田仲初,李学文,等. 混凝土桥梁收缩徐变计算的有限元方法与应用[J]. 中国公路学报. 2004, 17(2): 55-58.Yan Dong-huang,Tian Zhong chu,Li Xue-wen,et al. Finite element method and application for the shrinkage and creep of concrete bridges[J]. China Journal of Highway and Transport. 2004, 17(2): 55-58.
    [10] 匡文起,张玉良,辛克贵. 结构矩阵分析和程序设计[M]. 第1版. 高等教育出版社, 1991.Kuang Wen-qi,Zhang Yu-liang, Xin Ke-gui. Structure matrix analysis and program design. 1st edition. Higher Education Press,1991
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

陈亮.组合梁几何非线性与长期效应的同步算法[J].同济大学学报(自然科学版),2017,45(08):1108~1113

复制
分享
文章指标
  • 点击次数:2151
  • 下载次数: 1247
  • HTML阅读次数: 553
  • 引用次数: 0
历史
  • 收稿日期:2016-09-11
  • 最后修改日期:2017-02-27
  • 录用日期:2017-06-05
  • 在线发布日期: 2017-09-07
文章二维码