太阳助秸秆沼气的生命周期能耗及碳排放分析
CSTR:
作者:
作者单位:

同济大学机械与能源工程学院,上海,210804,同济大学机械与能源工程学院,上海,210804,同济大学机械与能源工程学院,上海,210804,中国建筑科学研究院,北京,100013

中图分类号:

TK6

基金项目:

国家“十二五”科技支撑计划(2015BAL02B03)


Life Cycle Fossil Energy Consumption and Carbon Emissions of a Solarassisted Straw Biogas System
Author:
  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [11]
  • |
  • 相似文献 [5]
  • |
  • 引证文献
  • | |
  • 文章评论
    摘要:

    对徐州某太阳能辅助加热的秸秆沼气系统进行了深入调研和测试,采用生命周期评价方法分析了涵盖基础设施建设、系统运行维护、秸秆运输、沼气使用以及沼液沼渣利用等各个阶段的化石能源消耗及碳排放清单.结果表明太阳能沼气系统生命周期化石能源消耗为0.173 MJ?MJ-1,碳排放为0.121kgCO2eq?MJ-1(二氧化碳当量).与天然气比较,秸秆沼气系统的单位热值化石能源消耗仅为天然气的15.6%,单位热值碳排放比天然气系统多55.0%.与秸秆直接露天燃烧相比,秸秆沼气系统的单位秸秆质量生命周期碳排放比秸秆直接露天燃烧低59.7%.

    Abstract:

    A life cycle inventory analysis model for all life stages of solarassisted straw biogas system is developed, including raw materials acquisition, construction, straw transportation, operation and maintenance, biogas using and eventually waste management. Based on onsite investigation and measurement of a solarassisted straw biogas project, the life cycle fossil energy consumption and carbon emissions are calculated. The results show that the fossil energy consumption of the solar assisted biogas system is 0.173 MJ?MJ-1, and the carbon emission is 0.121kgCO2eq?MJ-1. When compared to natural gas, the fossil energy consumption of straw biogas is only 15.6% of the natural gas, the carbon emissions is 55% higher than that of the natural gas. The life cycle carbon emissions of solar assisted biogas system is 59.7% lower than straw burning.

    参考文献
    [1] 石惠娴,王韬,朱洪光等. 地源热泵式沼气池加温系统[J]. 农业工程学报. 2010, 26(2): 268.SHI Huixian, WANG Tao, ZHU Hongguang, et al., Heating system of biogas digester by ground source heat pump [J]. Transactions of the CSAE. 2010, 26(2): 268.
    [2] Curry N, Pillay P. Integrating solar energy into an urban small-scale anaerobic digester for improved performance [J]. Renewable Energy. 2015;83:280-93.
    [3] Feng R, Li J, Dong T, Li X. Performance of a novel household solar heating thermostatic .biogas system [J]. Applied Thermal Engineering. 2016;96:519-26.
    [4] 裴晓梅, 张迪, 石惠娴等. 太阳能-地源热泵沼气池加热系统集热面积优化[J]. 农业机械学报. 2011, 42(1): 122PEI Xiaomei, ZHANG Di, SHI Huixian, et al., Collector area optimization of integrated solar and ground source heat pump system for heating biogas digester [J]. Transactions of the Chinese Society for Agricultural Machinery. 2011, 42(1): 122
    [5] Intergovernmental Panel on Climate Change, Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Published for the IPCC by the Institute for Global Environmental Strategies, Japan, 2000.
    [6] 中国建筑材料联合会. 中国建筑材料工业年鉴2014[M]. 北京:中国建筑材料工业年鉴社,2015.China Building Material Council. Yearbook of China building material industry 2014 [M]. Beijing: China Building Materials industry Press, 2015.
    [7] 中国电力年鉴编委会. 2014中国电力年鉴[M]. 北京:中国电力出版社,2015.China Electric Power Yearbook Editorial Committee. China Electric Power Yearbook 2014 [M]. Beijing: China Electric Power Press, 2015.
    [8] 中国能源年鉴编委会. 中国能源统计年鉴2014[M]. 北京:中国统计出版社,2015.China Energy Statistical Yearbook Editorial Committee. China Energy Statistical Yearbook 2014 [M]. Beijing: China Statistical Press, 2015.
    [9] 祝斌, 朱先磊, 张元勋等. 农作物秸秆燃烧PM2.5排放因子的研究[J]. 环境科学研究. 2005, 18(2): 29-33.ZHU Bin, ZHU Xianlei, ZHANG Yuanxun, et al., Emission factor of PM2.5 from crop straw burning [J]. Research of Environmental Science. 2005, 18(2): 29-33.
    [10] LI Xinghua, WANG Shuxiao, DUAN Lei, et al., Particulate and trace gas emissions from open burning of wheat straw and corn stover in China [J]. Environmental Science Technology. 2007, 41(17): 6052-6058.
    [11] Andreae M. O., Merlet P., Emission of trace gases and aerosols from biomass burning [J]. Global Biogeochemical Cycles. 2001, 15(4): 4955-4966.
    相似文献
    [1]苏醒,李航,张旭,宋波.太阳助秸秆沼气的生命周期能耗及碳排放分析[J].同济大学学报(自然科学版),2017,45(8):1204-1208.
    [2]王婧,徐旭,张旭.村镇能源系统的低成本要素定量化研究[J].同济大学学报(自然科学版),2010,38(10):1556-1560.
    [3]储险峰,李娜,刘艳.橡胶阻尼材料的生命周期清单分析[J].江西科学,2010,28(3):359-364.
    [4]王琮淙,邱国玉.弃风限电对中国风力发电的环境效益的影响研究——以呼和浩特为例[J].科学技术与工程,2017,17(26).
    [5]新型过流保护器是由多聚物塑料与导电材料等制成的一种性能优异的PTC器件,它主要用于各种电子仪器设备的电源以及负载过流保护,还可用于通信、各种家用电器保护,是一种用途十分广泛、保护电路简单、保护效果理想的新一代过流保护器。主要技术指标;①正常工作温度:-40~85℃;②正常保护电流:0.1~20安培;③最大表面温度:≤120℃。  接产条件 厂房300平方米,设备有车床、冲床、油压机、密炼机、塑封机、化机、烘干恒温箱、双辊炼胶机等,需动力50千瓦,劳动力20人。设备投资:50万元。  经济效益主要应用于各种精密仪器、.仪器仪表类[J].科技信息,2000(2):48-53.
    引证文献
引用本文

苏醒,李航,张旭,宋波.太阳助秸秆沼气的生命周期能耗及碳排放分析[J].同济大学学报(自然科学版),2017,45(08):1204~1208

复制
分享
文章指标
  • 点击次数:2295
  • 下载次数: 990
  • HTML阅读次数: 607
  • 引用次数: 0
历史
  • 收稿日期:2016-12-02
  • 最后修改日期:2017-06-06
  • 录用日期:2017-02-08
  • 在线发布日期: 2017-09-07
文章二维码